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Abstract

I examine the effects of downstream buyer power from coal-fired power plants on the

organization of production in the upstream coal mining industry in China. I estimate a

structural model of coal mines featuring (i) joint production of coal and worker safety

and (ii) endogenous safety choices and factor-augmenting productivity. To identify

the causal effects of buyer power on coal mining outcomes, I employ a shift-share

instrumental variable, leveraging exogenous variations stemming from a restructuring

of the electricity sector. I find an unintended but life-and-death consequence associated

with market power: buyer power exposure leads to higher provincial death rates, also

corroborated by lower safety-coal output ratios at the mine level. The underlying

mechanism is that exposure to buyer power prompts coal mines to shift toward less

capital-intensive, more traditional, and less safe mining technologies, leading to higher

death rates. Finally, back-of-the-envelope calculations suggest that the decline in buyer

power due to the electricity sector restructuring explains 53% of the improvement in

coal mining death rates. The findings provide a new perspective on understanding the

shared experience of high mining death rates in developed and developing countries

over different historical periods.
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1 Introduction

Market power is pervasive across industries and countries in both input and output markets.1

A growing literature studies the consequence of market power, or competition, on welfare

distribution (De Loecker et al., 2021; Edmond et al., 2023), allocative efficiency (Cicala,

2022; Rubens, 2023), innovation (Aghion et al., 2005; Hashmi and Van Biesebroeck, 2016;

Bloom et al., 2016), and productivity (Olley and Pakes, 1996; Fabrizio et al., 2007; Backus,

2020), among others. However, less is known about how market power affects the within-

firm organization of production. A comprehensive understanding of this is an essential

prerequisite for accurately interpreting the broader effects of market power.2

In this paper, I speak to this question by empirically examining the effects of down-

stream buyer power on the within-firm organization of production in the upstream coal

mining industry in China. The Chinese coal mining industry is exposed to substantial buyer

power from downstream coal-fired power plants while concurrently enduring record-breaking

high coal mining death rates—death per million tons of coal—an associated outcome of coal

and safety decisions. Coal mines choose where to be on the production-safety frontier to de-

termine the corresponding tradeoff. Notably, the high mining death rates are not exceptional

in China. Many developed countries faced severe death rates in the mining industry at the

commencement of industrialization, while this phenomenon is still unfortunately repeated

in numerous developing countries today.3 Nevertheless, in the Chinese context, exogenous

demand-side shocks in the downstream buying industry, specifically the electricity sector,

bring rich variation in the upstream coal mining industry’s exposure to buyer power. The

feature yields a unique causal inference framework to trace the impacts of buyer power on

the joint production of coal and worker safety, which provides a novel lens for understanding

the shared experience of high mining death rates in developed and developing countries over

different historical periods.

However, there are at least three reasons why answering this question empirically is chal-

lenging. First, measuring market power frequently encounters measurement issues. Relying

on concentration measures, e.g., Herfindahl-Hirschman Index (HHI), sensitively depends on

market definitions (Syverson, 2019; Berry et al., 2019), while using the production approach

1Market power has been quantified using different methods and data in the product markets (De Loecker
et al., 2020; Benkard et al., 2021; Döpper et al., 2024); in the input markets (Berger et al., 2022; Yeh et
al., 2022; Rubens, 2023); across countries (De Loecker and Eeckhout, 2018); across industries (Asker et al.,
2019; De Loecker and Scott, 2022; Gentzkow et al., 2024; Grieco et al., 2024); among others.

2Backus (2020) directs that within-firm adjustment mechanisms are of first-order standing for revealing
the effects of market power. In the context of the ready-mix concrete industry, he finds the correlation be-
tween competition and productivity is entirely driven by with-firm adjustments in productivity. In contrast,
across-firm changes regarding reallocation and selection do not drive the correlation.

3See Global Mine Accidents (2010) and Wright (2022) for more details.
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incurs challenges to estimating output elasticities consistently when physical input/output

data is unavailable (Klette and Griliches, 1996; De Loecker and Goldberg, 2014; De Loecker

and Syverson, 2021).4 Second, within-firm multi-output data is limited in availability in

widely used firm-level datasets to be exploited to answer the question. Third, market power

is endogenous to a firm’s production decisions, inducing simultaneity bias to estimates of

the market power impacts.

I address these concerns by first employing the production approach with a non-substitutable

technology following De Loecker and Scott (2022) in the coal-fired power generation sector,

i.e., the vertically downstream industry to coal mines. I take advantage of a novel and com-

prehensive plant-level power generation dataset, providing both physical input and output

information for each power plant. These benefits leave my specification free from the in-

put/output price bias and yield a consistent measure for the buyer power of power plants

without assuming any model of bilateral competition and conduct.

Second, I exploit coal mine-level accident records to construct a measure of the safety

output at the mine level, i.e., predicted accident probability. I estimate a structural model

for coal mines to examine the production-safety tradeoff in the spirit of Grieco and McDe-

vitt (2017).5 I incorporate a transformation function governing the production process from

multi-inputs to multi-outputs of coal and worker safety without imputing the output-specific

input allocation scheme. In particular, I consider a general constant elasticity of substitu-

tion technology with factor-augmenting productivity following Doraszelski and Jaumandreu

(2018). I first utilize the ratio of the coal mine’s optimal factor demand for labor and ma-

terial to infer the unobserved labor-augmenting productivity. I subsequently use a control

function with the previously measured buyer power exposure and other necessary factors to

control for the unobserved Hicks-neutral productivity under imperfect competition and un-

observed demand shocks. I further employ an endogenous productivity process (De Loecker,

2011, 2013), which nests the classical exogenous law of motion of productivity as a special

case, for both Hicks-neutral and labor-augmenting productivity to allow the buyer power to

affect coal mines’ future productivity.

Third, I utilize the vertically related industry structure to exploit spatial-temporal vari-

ation in buyer power exposure to the coal mining industry caused by exogenous changes

from an electricity sector restructuring and other demand-side shocks. I construct a shift-

share instrumental variable (IV) to estimate causal effects.6 I follow Borusyak et al. (2022)

4One could also employ an underlying demand system and assume firm conduct to estimate demand
primitives and infer market power information. See Berry et al. (1995) and Nevo (2001).

5Grieco and McDevitt (2017) develop an estimating framework with neutral productivity to measure the
magnitude of the quality-quantity tradeoff in the dialysis industry context. Compared with their specifica-
tions, I further allow a general production function setup and non-neutral productivity.

6Recent literature formalizes identifying properties for shift-share (or “Bartik”) instruments (Goldsmith-
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to assume that the shifters (provincial demand-side shocks in coal consumption from the

coal-fired power generation sector) are conditionally orthogonal to the coal mining industry

outcomes, allowing the shares (historical interprovincial coal selling networks) to be endoge-

nous. By leveraging the IV, I conduct causal inferences to study how buyer power affects

provincial death rates in the coal mining industry. I further zoom in on the coal mine level

to investigate the within-firm adjustments in multi-output production, input decisions, cost

of capital, and technological changes in response to variations in the exposed buyer power.

Crucially, although the specific technology adoption information is commonly unavailable at

firm-level datasets, I can infer technological changes for coal mines from input intensity pat-

terns, exploiting the distinct engineering characteristics across different mining technologies.

The results of the production approach reveal that power plants procure coal on average

at a price 12% below their marginal revenue product of coal. The time-series variations

of buyer power from coal-fired power plants well capture the shock of electricity sector

restructuring, slumping on average by 7.7 percentage points in 2004 and onwards. This

corroborates that the restructuring brings exogenous shocks to coal mines’ buyer power

exposure when constructing the shift-share IV. In addition, the estimates of the structural

model of coal mines show a substantial production-safety tradeoff: a coal mine aiming to

reduce the probability of accidents by 1 percentage point would need to decrease its coal

production by 3.8%. Put differently, increasing coal output by 1% would necessitate a

reduction in safety level, leading to a 0.26 percentage point rise in accident probability,

holding inputs and productivities unchanged. The significant tradeoff between safety and

production in coal mining aligns with Gowrisankaran et al. (2015).

Using the estimates and the constructed IV, I examine how buyer power affects provin-

cial death rates in the coal mining industry and other within-firm adjustment margins. The

results indicate that increasing the exposed buyer power in the coal mining industry by

1% would increase the death rate by 4.55%. This maps to a rise in deaths by 11 people

per province a year, holding the coal production quantity fixed. Coal mine-level evidence

presents qualitatively consistent findings: a 1% increase in buyer power of power plants leads

to a 10.08% drop in the safety-output ratio. This empirical evidence corroborates theoretical

findings that downstream power plants’ buyer power can induce more upstream coal mining

accidents.

To investigate the mechanism behind this, I examine how buyer power exposure affects

technological changes, which naturally affect coal mines’ efficiency and safety performance.

Pinkham et al., 2020; Borusyak et al., 2022) and implements them in different contexts (Autor et al., 2013;
Hummels et al., 2014; Imbert et al., 2022). The causal identification of shift-share instruments can come from
either conditional exogenous shares (Goldsmith-Pinkham et al., 2020) or shifters (Borusyak et al., 2022),
allowing the other component to be endogenous.
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I find that a 1% increase in buyer power reduces capital adoption by 1.67% and capital-

to-labor ratio by 1.23%. In contrast, the adjustments in capital-to-material and material-

to-labor ratios in response to higher buyer power exhibit reductions in point estimates but

are not statistically significant. Combining these patterns with distinct engineering details

in input intensity across different mining technologies, the underlying mechanism emerges:

higher buyer power could reduce the coal mine’s capital adoption and shift the mining

technology from conventionally-mechanized mining to blasting mining, which tends to be

more dangerous by nature, leading to higher death rates. Further evidence shows that

higher buyer power indeed raises the cost of capital, partially explaining the adjustments in

capital adoption and technical upgrades.

The findings are robust under different measures for the coal mining death rate, in-

strumental variable, and buyer power exposure. In addition, as an extension of my model,

I allow for the heterogeneity in the production-safety tradeoff, by which the slope of the

production-safety frontier could vary across mines depending on their technology or capital-

to-labor ratio. I find that coal mines utilizing more advanced modern technology tend to

flatten the production-safety tradeoff, expanding the production frontier toward safety com-

pared to coal mines employing relatively traditional technology. This evidence aligns well

with the technological characteristics associated with distinct mining methods in practice.

Using estimates obtained from the model, I compute the opportunity cost of saving

one miner’s life is roughly 7 million RMB Yuan, while the “national benchmark” of the

compensation payments in post-accident settlements for each worker killed was only 3% of

the opportunity cost. Compared with low post-accident compensation payments, the high

opportunity cost of prior-accident prevention tends to drive coal mine owners to have much

higher incentives to sacrifice safety rather than forgo coal production. Moreover, further

back-of-the-envelope calculations indicate substantial unintended consequences of reducing

buyer power from restructuring the electricity sector on coal mining death rates. Declined

buyer power explains 53% of the improved coal mining death rate performance. The findings

offer a novel perspective for understanding the common experience of high mining death rates

across developed and developing countries throughout various historical periods.

Related Literature. I contribute to three strands of literature. First, I examine how market

power affects the within-firm organization of production. Whereas a large body of empirical

literature exists on the consequence of market power and competition in the fields of indus-

trial organization (IO) (Olley and Pakes, 1996; Aghion et al., 2005; Hashmi and Van Biese-

broeck, 2016; Asker et al., 2019; Backus, 2020; Rubens, 2023), macroeconomics (De Loecker

et al., 2021; Edmond et al., 2023), international economics (Pavcnik, 2002; Bloom et al.,
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2016; Brandt et al., 2017), and energy economics (Fabrizio et al., 2007; Gao and Van Biese-

broeck, 2014; Cicala, 2022), among others, less is documented about the within-firm impacts

of market power on multi-output production and multi-dimensional productivity. I fill this

gap by estimating the effects of buyer power on these adjustment margins and find significant

within-firm adjustment mechanisms involved. It is crucial to consider these margins when

attempting to understand the comprehensive impacts of market power.

Second, this paper adds to the literature on production function estimation with factor-

biased productivity (Van Biesebroeck, 2003; Doraszelski and Jaumandreu, 2018; Zhang, 2019;

Demirer, 2022; Rubens, 2024; Rubens et al., 2024). I construct a framework for estimat-

ing transformation functions when production is multi-output and productivity is multi-

dimensional, without imputing input allocation scheme by output as in the multi-product

production function estimation literature (De Loecker et al., 2016; Orr, 2022; Valmari, 2023).

Notably, the estimating framework can be flexibly extended to identify other critical eco-

nomic tradeoffs beyond the scope of the production-safety context discussed in the paper,

such as production growth and emission while considering endogenous emission abatement

decisions, as in Shu et al. (2024).

Third, this study contributes to an extensive IO literature on vertically related indus-

tries (Grennan, 2013; Crawford et al., 2018; Lee et al., 2021; Conlon and Mortimer, 2021;

Demirer et al., 2024), where downstream behavior can impact upstream behavior in var-

ious dimensions. I contribute by revealing an unintended but life-and-death consequence

associated with market power in vertical-related industries. I find that buyer power from

the downstream buying industry could ultimately affect technological adoptions and death

outcomes of firms in their upstream market. This is complementary to the work of Gaynor

et al. (2013) that indicates competition could save lives in the output market in a healthcare

context. The findings suggest significant implications for competition policy that extend

beyond safety outcomes, which further contribute to a broad theoretical literature on the

competitive effects of (countervailing) buyer power (Galbraith, 1952; Dobson and Waterson,

1997; Chen, 2003; Inderst and Wey, 2011; Iozzi and Valletti, 2014; Gaudin, 2018; Loertscher

and Marx, 2019a,b, 2021).

The remainder of the paper is structured as follows. Section 2 presents background

on the coal mining industry in China. Section 3 introduces different datasets used in the

empirical analysis. In Section 4, I develop a theoretical framework to formalize the intuition

that power plants’ buyer power downstream affects coal mines’ tradeoff decisions upstream.

Section 5 presents the empirical framework for identifying how buyer power affects the or-

ganization of coal mine production, and Section 6 provides the estimation results from the

empirical models. Finally, Section 7 concludes.
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2 The Coal Mining Industry in China

2.1 Production and Safety

Production and Safety Generating Process. China accounts for the most annual coal

production worldwide.7 Substantial variations in geological conditions of coal seams in China

lead to heterogeneous adoption of coal extraction methods and technology.8 Depending

on the thickness, dip angle, and other factors of the coal seams, Chinese coal mines can

adopt more than 20 different underground coal mining methods for extraction (Peng, 2010).9

Regardless of which specific technology is adopted, a typical coal extraction face consists of

five main steps that cycle in sequence: coal cutting, loading, transporting, roof supporting,

and goaf stowing, as seen in Figure 1.10 See Appendix B for operation details about each

step of the coal production process. The degree of mechanization and corresponding labor

participation in different operations, therefore, matter for ultimate coal output, as well as

production safety.

Cutting Loading Transporting Supporting Goaf Stowing

Circulation Operation

Figure 1: A Typical Coal Mining Process

On the other hand, coal mines also need to adopt auxiliary production equipment and

relevant workers for operation and maintenance to support the regular coal mining process.

The coal production process cannot be carried out smoothly without the normal operation

of the auxiliary system. For example, an indispensable auxiliary system, among others, is

mine ventilation. The benefit of installing the mine ventilation system is straightforward to

ensure fresh air and, most importantly, guarantee the dilution and discharge of toxic and

dangerous gases underground. Hence, these safety-enhancing auxiliary production systems

and associated labor inputs, though they do not directly contribute to coal production, are

7China accounted for 31% and 51% of world coal production in 2002 and 2022, respectively. Data source:
International Energy Agency (IEA).

8For example, the thickness of the coal seam matters a lot for adopting coal-cutting machines. Too
narrow coal veins are unsuitable for introducing mechanical cutting techniques (Delabastita and Rubens,
2024).

9In general, these methods are all variant forms of the longwall extraction method but differ in specific
types of specialized equipment required in different steps of the production process.

10In the context of coal mining, “face” refers to the area of a coal seam from which coal is being extracted.
It is the working zone where miners and machinery cut, drill, blast, load, and transport coal.
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essential to support ultimate coal production in the background.

Technological Change. The mechanization rate in China’s coal mining industry was

relatively low between 2000 and 2010. Specifically, mechanized coal mining accounted for less

than 40% of the coal mines in China in 2000, while the state-owned key coal mines—the most

advanced coal mines in China at the time—only had 75% mechanized coal extraction (NEA,

2001). The 10th five-Year Plan for the Coal Industry set mechanization targets in 2005

for large- and medium-scale coal mines as 90% and 60%, while small-scale coal mines were

planned to “begin to take off”. Ultimately, the national mechanization degree of coal mining

and excavation in 2010 turned to be 65% and 52%, respectively (NEA, 2016). The reasons for

the low mechanization rate in China were partially due to the difficult geological conditions

for adopting mechanical extraction techniques (Peng, 2010). But a more prominent reason,

among others, would be the expensive fixed cost of mechanizing the whole coal production

line (Wright, 2004). In 2000, most coal mines in China were commonly not profitable and

financially constrained to do so (Wang, 2007; Shi, 2013; Guo et al., 2018).

Nevertheless, as coal mines gradually mechanized, more and more mines began to up-

grade their technology from blasting mining to conventionally-mechanized mining and finally

to fully-mechanized coal mining technology (Wright, 2012, 2022). See Appendix B for a de-

tailed introduction to different coal mining technologies. Table 1 summarizes distinct input

intensity characteristics concerning the mining process for different types of mining technol-

ogy.

Table 1: Input Intensity Characteristics of Mining Technology

Mining Process
Type of Technology

Blasting Conventionally-mechanized Fully-mechanized

Cutting L L or K K*

Loading L L or K K*

Transporting K K K*

Supporting M and L M and L K*

Goaf Stowing L L K*

Notes: I refer to Yan et al. (2009) for a comprehensive introduction and technical details
of different coal mining technologies adopted in China. I highlight and summarize the
differences in input intensity characteristics for different coal mining technologies. Herein,
for the exposition, “L” refers to labor-intensive, “M” denotes material-intensive, “K” rep-
resents capital-intensive, while “K*” reflects even higher capital intensity than “K”.

The distinct characteristics of input intensity across mining technologies, as shown in

Table 1, provide a unique lens for understanding technological changes in the coal mining

industry. Although I do not directly observe the specific technology information for coal
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mines, one can infer technological adoption from the input intensity.11

In summary, fully-mechanized coal mining technology is the most capital-intensive. Any

technological changes from other mining methods to fully-mechanized coal mining require

substantial capital inputs, hence a significant increase in capital-related input intensities,

e.g., K
L

and K
M
. In contrast, technological changes from blasting mining to conventionally-

mechanized mining also incur a rise in K
L

and K
M
, though the extent wouldn’t be that sub-

stantial compared to the transition to fully-mechanized mining. While changes in M
L

from

technological switching are unclear as blasting and conventionally-mechanized mining de-

mand both labor and material much, and fully-mechanized coal mining requires little for

both inputs, leading to ambiguous realization in M
L
.

Coal Mining Accidents. The coal mining industry is considered one of the most haz-

ardous industries worldwide due to its sordid working conditions and complicated production

system (ILO, 2015).12 China is the world’s largest coal producer, with 97% of coal mines

underground, experiencing the highest coal mining death rate (NMSA, 2016). For producing

every one million tons of coal, five people died in China, compared with 0.5 people dead in

India and 0.04 people dead in the United States during the same period from 1992 to 2001.13

Difficult geological conditions played some roles in the high fatality mining rates—gassy

mines are naturally pervasive in China—but the primary reasons should come from lacking

safety equipment, e.g., gas-detection equipment, as other advanced coal-producing countries’

experience has shown that, in principle, these problems have technological solutions (Wright,

2004; ILO, 2006; Wright, 2012; Murray and Silvestre, 2015).14 Certainly, some of the disas-

ters were caused by less-skilled workers’ misconduct or mistaken operations (Liu et al., 2018,

2021). Random factors, such as earthquakes, also correlate with many coal mining accidents

in China (Chen, 2020).15

11Unless one directly observes technological adoption information, e.g., Collard-Wexler and De Loecker
(2015) for the US steel industry and Rubens (2022) for the US coal mining industry, most wildly-used
firm-level datasets have little information about technology choices.

12ILO (2015) indicates that the mining industry, although only accounts for 1% of the global workforce,
is responsible for 8% of fatal accidents at work. While coal mining fatalities in China comprise around 70%
of the worldwide coal fatalities (Chen et al., 2013).

13The detailed data for cross-national comparisons for fatality rates come from Wright (2004). In its
comprehensive description of China’s coal mining industry, Tim Wright notes that the fatality rates in
China’s township and village mines at the end of the 20th century were similar to that of Belgium in the
early 20th or Britain in the third quarter of the 19th.

14Among all coal mining accidents in China from 1994-1999, compared with respective proportions in
Belgium (18% and 39% in 1881-1913) and the UK (13% and 51% in 1873-1932), gas explosions and roof
falls accidents accounted for 49% and 29% of all accidents, respectively. Gas explosions accounted for an
abnormally high proportion in China.

15Some political economy literature attributes China’s high coal mining death rates to the difficulty in
enforcing the law on coal mining safety due to the disincentive from the economic growth lost for implement-
ing safety regulation (Wright, 2004; Li and Zhou, 2005), or collusion between regulators and firms (Jia and
Nie, 2017). In contrast, Shi and Xi (2018) find that coal mine safety played a salient role in local officials’
performance evaluations.
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In addition to affecting worker safety, mining disasters tend to incur substantial eco-

nomic costs for coal mines per se, including suspension of coal production, compensation of

injured or dying workers, direct machinery capital loss due to the disaster, administrative

penalties due to the safety regulation, etc. See Charles et al. (2022) for a detailed discussion

about underlying accident costs.

Nevertheless, from 2000 to 2020, though the death rate remained high compared with

other advanced coal-producing countries, China’s coal mining safety improved significantly,

from 5.71 deaths per million tons of coal production in 2000 to 0.06 deaths per million tons

of coal production in 2020, around 100 times lower than two decades ago.16 Figure 2 shows

the evolution of coal production and mining death rates from 1995 to 2007. Increased coal

production since the 21st century has witnessed a drastically declining death rate, defined

by total casualties divided by total coal output.17 Throughout my sample period (1999-

2007), each province produced about 70 million tons of coal per year, for which coal mining

accidents caused 243 fatalities.
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Figure 2: Coal Production and Safety in China: 1995-2007

Sources: Compilation of Coal Statistics of China’s Coal Industry.

16The death rate data in China’s coal mining industry in 2020 comes from Wright (2022).
17Death per million tons of coal is a widely adopted safety performance measure in the mining industry

worldwide. Alternative death rate measures, e.g., death per worker, indicate similar evolution patterns, as
seen in Appendix A. However, since death per million tons of coal correlates coal production with safety, it
is more informative as it can be regarded as a rough measure of the production-safety tradeoff.
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2.2 Coal Demand and Source of Buyer Power

Coal Demand. Coal resources are abundant in China but with substantial variation in

geographical distribution. In 2000, the top 10 coal-producing provinces produced 75% of

the national output, while the southeast coastal regions, the main coal consumers and GDP

contributors, could only produce 18% of coal for their own use.18 Hence, most coal was trans-

ported inter-provincially from north to south, from inland provinces to coastal provinces, by

railway mostly.19 At the time, the railway transportation sector was wholly state-owned

with regulated uniform freight rates by product (MRC, 2000). The coal-fired power gener-

ation sector was the largest coal-buying sector (54% in 2000, even higher in the following

years), consuming more coal than all other industries combined. To ensure the security

of energy provision, the Ministry of Railways prioritized and guaranteed most of the coal

transportation for coal-fired power plants (Wang, 2007).

However, the coal mining production was unconcentrated in China. Yang et al. (2017)

shows that the top four and eight coal mining companies accounted for around 10% and

20% of the national market share in 2000, respectively, and even lower before. To increase

their bargaining power over price, coal mining companies frequently attempted to form price

cartels during the annual coal ordering fair organized by the government. More details about

the annual coal ordering fair are in the following subsection.

Coal Pricing. To transition from the planned economy to the market economy, China

adopted a unique dual-track pricing approach to market liberalization in various factor mar-

kets (Sicular, 1988; Li, 1999; Lau et al., 2000; Che and Facchini, 2007).20 The market of

thermal coal, also called “electricity coal,” the type of coal that coal-fired power plants use

as input to generate electricity, was one of the last markets still under the dual-track system

during the sample period (1999-2007).21

To implement the dual-track thermal coal system, at the beginning of the year, an annual

18The top 10 coal-producing provinces were Shanxi, Shandong, Henan, Inner Mongolia, Hebei, Hei-
longjiang, Anhui, Liaoning, Sichuan, and Guizhou, and the southeast coastal regions consist of Jiangsu,
Shanghai, Zhejiang, Fujian, Guangdong, and Hainan. The numbers are calculated using the year 2000 data
from the China Energy Statistical Yearbook. Other numbers regarding provincial coal consumption and
production in the same paragraph come from the same data source.

19In 2000, coal import only accounted for 0.2% of total coal consumption.
20Under a dual-track system, the planned economy and the market economy coexisted, while the market

track progressively expanded with the gradual weakening of the planned track until it achieved market
liberalization. Under the planned track, economic agents were supposed to buy or sell fixed quantities of
goods at fixed plan prices. Without adjustment cost, the dual-track approach has been proved efficient
Pareto-improving economic reform. See Lau et al. (2000) for a detailed introduction and proof.

21The coal market, including both thermal and non-thermal coal, was entirely under the market track in
1994 for a while, but the thermal coal market went back to embracing the planned track after price chaos
soon happened between the coal mining and power generation industries—the thermal coal price went too
high for power plants which threaten the power provision security (Guo et al., 2018). The dual-track thermal
coal pricing system kept operating with few essential changes until it ultimately ended in 2012.
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coal ordering fair was supposed to be organized, in which both the supply and demand sides of

coal would participate, i.e., coal mining companies and coal-fired power plants (Wang, 2007).

Coal prices were nominally decided via bilateral bargaining between both sides. However, the

government always intervened in coal prices with a so-called “government guidance price,”

which was a linear per-unit coal tariff and more favorable to power plants when both sides

had a hard time achieving agreements.22

Drivers of Buyer Power. The ability of coal-fired power plants to exert buyer power

over upstream coal mines primarily comes from the historical and institutional regime.

Relative to the coal mining industry, rich policy and structure changes happened down-

stream of the power market, hence incurring substantial variation in buyer power. For exam-

ple, after the 2002 electricity sector restructuring, the monopoly power generation company

was split into five independent companies, and private power plants were also allowed to

enter the power market. Each power company needed to bargain with upstream coal mines

to make thermal coal contracts during the annual coal trade fair; before the 2002 electric-

ity sector restructuring, it was the China Fuel Corporation as the sole representative for the

whole power generation sector. Hence, the restructuring tends to reduce power plants’ buyer

power.23

Besides, coal mines’ cartel formation incentives tend to reduce buyer power downstream.

However, it was unclear whether the price cartels were effective and practical (Yang et al.,

2012). Finally, coal safety regulations related to restricting production or enforcing close-

downs could also affect upstream bargaining power and ultimate equilibrium downstream

buyer power. Disentangling specific sources of buyer power is not the main interest of the

paper, but rich variations in buyer power do help identify how buyer power affects variables

of interest in the coal mining industry. In Section 6.1, I show that the electricity sector

restructuring is a driving force of buyer power that cannot be ignored.

3 Data

I combine multiple data sources to study the comprehensive impact of buyer power on

various outcomes. The datasets include production and cost information for coal mines and

coal-fired power plants, as well as coal mine accidents and fatalities. The data sources are

supplemented by several additional datasets covering separate information on state-owned

22The guidance price for electricity coal has been announced as canceled, but due to the severe price
conflicts between coal mines and power plants at the time, the practice of intervening by using a so-called
“reference price,” which is essentially the same thing but with a different name, has been adopted again.

23I refer to Gao and Van Biesebroeck (2014) for a detailed description of the deregulation and vertical
unbundling of the electricity sector restructuring in 2002.
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key coal mines, railway coal transportation, and earthquakes, etc. More details on dataset

summary statistics are provided in Appendix C.

Annual Survey of Industrial Firms Data. I obtain production and cost data for coal

mines and power plants between 1999 and 2007 primarily from the Annual Survey of In-

dustrial firms (ASIF), which is collected by the National Bureau of Statistics (NBS).24 This

dataset contains detailed information on the firm’s industry classification, total production

(sale), intermediate expenditure (material), total employment and wage (labor), and real

capital stock (capital) for all state-owned firms and non-state-owned firms with sales above

5 million RMB.25 I retain all coal mines and coal-fired power plants under the 4-digit Chinese

Industry Classification (CIC) codes of “0600” and “4011”, which refer to the coal mining

sector and coal-fired power generation sector.26

I complement the ASIF dataset with separate product-firm-month-level total production

(quantity) data for the same sample period from the NBS, though I aggregate the production

quantity information to the firm-year level for consistency. Due to the industry features of

coal mining and coal-fired power generation, most firms produce homogenous coal/electricity

as their single and ultimate output.

Coal Mine Accident Data. Coal mine accident records (2000-2007) are from the State

Administration of Workplace Safety (SAWS). The SAWS requires local regulatory bureaus

to report information on each coal mine disaster about the coal mine’s name, accident type,

occurrence time, location, number of fatalities, and direct causes (Shi and Xi, 2018; Chen,

2020). I merge the coal mine accident records with the coal mines in the ASIF dataset by

fuzzy matching coal mines’ names. See Appendix C for a credibility evaluation of the coal

mine accident data.

Coal-fired Power Plants Production Data. I supplement coal-fired power plants’ pro-

duction and cost information in the ASIF data with a novel plant-level power generation

dataset digitized by myself, which was originally compiled and examined by the China Elec-

tricity Council (CEC), for all power plants in China with a capacity above 6 MW that

operated during 1999 and 2007.27 This dataset provides comprehensive information on a

24The unit of observation in the ASIF dataset is a firm (or an establishment), which is defined as a
legal unit (faren danwei). Most of the firms in the ASIF dataset are single-plant firms, e.g., the share of
single-plant firms was 96.6% in 2007 (Brandt et al., 2014). Hence, I refer to the consistent firm-level units
when I mention “coal mines” or “power plants” in different contexts for the rest of the paper.

25See Brandt et al. (2012, 2014, 2017) for a comprehensive discussion about the data composition and
variable construction of the ASIF dataset.

26To obtain a consistent classification across the sample period, I dealt with changes in the CIC codes by
adjusting and unifying industry codes following Brandt et al. (2014).

27The threshold of 6 MW for being included in the dataset is fairly small for coal-fired power plants. For
comparison, a new offshore wind turbine has a capacity of 8-12 MW nowadays (IRENA, 2024). Hence, the
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power plant’s name, nameplate capacity, operating hours, power generated (quantity), and

coal used (quantity).28 Using detailed quantity information of power plants for both in-

put and output enables estimating the physical production function and, hence, a proper

measurement of buyer power afterward. More details will be introduced in Section 5.1.

Additional Datasets. I access various additional datasets over the same sample period

to augment main data sources. First, I obtain bilateral railway transportation data for

inter-provincial coal transportation from the China Railway Yearbook, provincial coal mining

fatality and production information, and state-owned key coal mines’ inter-provincial and

sectoral sales from the Compilation of Coal Statistics of China’s Coal Industry. Provincial

transport characteristics come from the NBS. Second, I access the provincial coal demand

information from the China Energy Statistics Yearbook. Third, I collect earthquake data

from the China Earthquake Networks Center, which provides detailed information on the

occurrence of longitude and latitude, time, magnitudes of the earthquake, and focal depth.

4 Theoretical Model

I develop a theoretical framework to formalize the intuition that firms’ buyer power down-

stream affects firms’ tradeoff decisions upstream. The specification is introduced in the

context of upstream coal mines and downstream coal-fired power plants. Coal mines and

coal-fired power plants contract on prices, taking into account expected coal mines’ produc-

tion and safety decisions.

4.1 Linking Bargaining to Buyer Power

A Nash Bargaining Example. I start by considering a simple complete-information

bargaining case in which an upstream coal mine bargains with a downstream power plant

over price, following a linear coal contract.29 The upstream coal mine bargains with the

downstream power plant over the coal price, P , given the expected amount of coal Q:

max
P

[PQ− C(Q)]1−b × [R(Q)− PQ]b , (1)

where the parameters b and 1− b indicate the bargaining power of the coal-fired power plant

and the coal mine, respectively. C(Q) is the total variable cost of the coal mine for producing

CEC dataset basically covers all coal-fired power plants in China during the sample period.
28The CEC dataset reports power plant-level coal heat rate annually, which I convert into coal used in

quantity given the plant’s power generation quantity.
29Linear contracts are commonly adopted for commodity trading, such as coal (Joskow, 1985, 1988).
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Q unit of coal, which I will elaborate more about its cost function in Section 4.2. R(Q) is

the total revenue of the power plant for generating Q̃ unit of electricity.30

The bargaining solution of price is characterized by the first-order condition of Eq.(1):

P = b× C(Q)

Q
+ (1− b)× R(Q)

Q
, (2)

indicating that, given Q, the negotiated coal price is a weighted average of the average

variable cost of the coal mine (C(Q)
Q

) and the average revenue of the power plant (R(Q)
Q

),

using the bargaining power of both sides as the weight.

Bargaining and Buyer Power. As noted in Section 2.2, the negotiation procedure be-

tween the coal mine and the power plant in practice could be distorted and vague. Both

bargainers are incentivized to hide private information to ensure themselves a better bargain-

ing position. Bargaining models under incomplete information in the case would be more

realistic, in which each bargainer is uncertain about her opponent’s information, evaluating

the latent values that her adversary might hold under a subjective probability distribution

(Chatterjee and Samuelson, 1983; Loertscher and Marx, 2021, 2022). However, paramet-

ric assumptions of the subjective probability about private valuations need discretion in

practice; even though imposing given parametric assumptions, two-sided bargaining games

with two-sided incomplete information likely have no known analytical solutions (Larsen and

Zhang, 2018, 2021).31

Hence, I do not take a stance on building a specific bargaining protocol to model the un-

derlying bilateral bargaining structure. Instead, I model the underlying bilateral bargaining

structure and capture equilibrium bargaining outcomes in a reduced-form way. Still, sup-

pose the upstream coal mine and downstream power plant bargain over price under certain

bargaining rules given the quantity of coal. I capture the outcome of the bilateral bargaining

game by an input price schedule from the downstream power plant’s perspective, which maps

the power plant’s demand for coal input, Q, to the negotiated coal price, P :

P = P (Q;Γ,b), (3)

where Γ is a vector governing supply and demand conditions between the buyer-seller net-

work, and b is a vector capturing exogenous buyer power-related primitives. One can find

30Assuming the expected dispatched order the power plant would be commanded is Q̃, and the power
plant’s heat rate of coal is η, and hence Q := Q̃/η is the corresponding determined amount of coal needed
as input for power generation.

31Larsen and Zhang (2018, 2021) propose an approach to estimate players’ valuations and expected gains
from trade under asymmetric information in the wholesale used-car market without imposing a particular
extensive form.
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that Eq.(2) nests well into Eq.(3), where Γ absorbs C(·) and R(·), and b incorporates b,

respectively.

From the coal mine’s perspective, given the quantity of coal, Q, optimality conditions

induce it to minimize its cost to obtain optimal payoffs. I will elaborate more on this in the

following section.

4.2 Joint Production of Coal and Safety

Production. I now discuss the coal mine’s cost function and corresponding input decisions

for producing the given unit of coal Q. To explicitly model the coal mine’s production and

safety decisions, I assume the coal mine adopts Kq and Ks, for production capital and safety

capital, and Lq and Ls, for production and safety workers, respectively, to produce outputs of

coal, Q = Q(Kq, Lq,Ωq), and safety, S = S(Ks, Ls,Ωs), where Ωv (v ∈ {q, s}) are exogenous
productivity for different production processes respectively. For the exposition, I define A( · )
as the measure of accidents negatively correlate with S( · ). Without loss of generality, let

A( · ) = −S( · ).32

Assume that Q( · ) and A( · ) are continuous and twice differentiable w.r.t to their ar-

guments, and the coal mine determines its input choices by minimizing the variable cost,

C(Q). Therefore, the associated Lagrangian function is

L(Kq, Ks, Lq, Ls, λ) = κ×A( · ) + w × (Lq + Ls) + r(b)× (Kq +Ks) + λ (Q−Q( · )) , (4)

where λ is the marginal cost at the given level of Q, and κ, w, and r(b) denote corresponding

prices for accident (or negative safety), labor, and capital stock, respectively. I model an

increase in b leads to higher r(b), i.e., ∂r(b)
∂b

> 0. The economic intuition behind this is that

financial liquidity, the strength of the balance sheet, asset structure, and/or creditworthiness

are all negatively correlated with downstream buyer power (Charles et al., 2022). I directly

verify this assumption in Section 6.3.33

The first-order conditions for any input is ∂L
∂V

= 0 with V ∈ {Kq, Ks, Lq, Ls}. By

32Clearly, A( · ) is an isomorphic function of S( · ) that each of them can be reserved by an inverse mapping
from each other.

33One can further model wage as a function of accident risk, as in Sider (1983), to capture risk premium
effects. Nevertheless, I follow Gowrisankaran et al. (2015) to account for the direct cost of the accident but
not only for the increased wage costs from accident risk. In Section 5.2, I utilize high-order polynomials to
control for risk premiums in estimation.
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rearranging the equilibrium terms, I have

r(b) = λ× ∂Q( · )
∂Kq

= −κ× ∂A( · )
∂Ks

, (5)

w = λ× ∂Q( · )
∂Lq

= −κ× ∂A( · )
∂Ls

. (6)

The optimizing mine employs different types of capital and labor until the benefit derived

from the last unit spent equals the corresponding increase in cost. The relative prices of

inputs determine the ratio of different inputs adopted for the same production process.

Buyer power downstream heterogeneously changes the input prices for different production

processes upstream, leading to distinct impacts on input adoption. I discuss this more in

detail in Section 4.3.

4.3 The Effects of Buyer Power

I now examine the effects of change in downstream power plants’ buyer power, i.e., mark-

down, on upstream coal mines’ production and safety decisions.

Assumption. Q( · ) and A( · ) are continuous and twice differentiable. For Xq ∈ {Kq, Lq}
and Xs ∈ {Ks, Ls}, I assume ∂Q

∂Xq > 0,
∂( ∂Q

∂Xq )
∂Xq < 0, ∂A

∂Xs < 0, and
∂( ∂A

∂Xs )
∂Xs > 0.

This assumption is straightforwardly due to explicit economic intuitions in the coal

mining industry, as seen in Section 2.1, implying more safety inputs generate more safety

output and, hence, fewer accidents. In contrast, more production inputs lead to more coal

output. In the coal mining industry, producing more coal induces coal mines to work and

operate at deeper underground or thicker coal layers, leading to diminishing marginal product

of different inputs for producing both coal and safety (or negative accidents), which boils

down to the second-order partial derivatives assumptions above.

Proposition 1. The buyer power of downstream power plants induces upstream coal mines

to adopt less capital for both coal production and worker safety, ultimately leading to lower

capital-to-labor ratios for both production processes.

Proof : See Appendix D.

The intuition of the impact of downstream buyer power on upstream production deci-

sions in Proposition 1 is that buyer power affects upstream input prices heterogeneously.

An increased cost of capital induces upstream coal mines to adopt less capital input for both

safety and production but does not directly affect labor input. The relative capital-to-labor

ratio upstream, determined by the relative input price of capital and labor, holding others
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fixed, unambiguously decreases due to the increased capital input price when buyer power

downstream increases.

Corollary 1. The buyer power of downstream power plants can induce more coal mining

accidents upstream via increased cost of capital adoption.

Proof : See Appendix D.

The intuition of Corollary 1 is self-contained by Proposition 1 in the sense that

less safety capital, resulting from increased capital costs, induces more accidents and more

deaths, holding others fixed.

Overall, the theoretical model suggests that buyer power downstream from power plants

can affect coal mines’ production and safety decisions and, hence, safety outcomes. Never-

theless, the model is silent about efficiency and technological changes in response to buyer

power variations. Instead of pre-imposing assumptions about the directions of technological

changes and the endogenous evolution process of productivity, I leave these margins to be

examined directly in empirics in Section 5.

5 Empirical Framework and Estimation

This section presents the empirical framework for identifying how buyer power affects the

organization of coal mine production. I first employ a production approach combined with

unique power plant-level generation data to consistently measure the buyer power of power

plants in Section 5.1. Second, I develop a multiple-output production framework with en-

dogenous safety choice and labor-augmenting technology to identify the production-safety

tradeoff in Section 5.2. Finally, in Section 5.3, I elaborate on the empirical strategy, relying

on an instrument variable methodology.

5.1 Buyer Power Measure

Production Approach. As illustrated in Section 2.2, coal mines and power plants made

contracts under incomplete information, opaque rules, and arbitrary intervention. Therefore,

specifying any behavioral assumption on competition and conduct between upstream and

downstream tends to be restrictive in measuring buyer power consistently. Instead, I employ

the production approach to measure the buyer power of power plants without assuming

any model of competition and conduct (De Loecker and Warzynski, 2012; Rubens, 2023;

De Loecker and Scott, 2022).

Specifically, consider a cost-minimizing power plant f generates Qft units of electricity
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using variable inputs such as coal,Mft, labor, Lft, and a fixed input of capital, Kft. I specify

a Leontief production technology for electricity generation:

Qft = min [ηftMft, F (Lft, Kft;β) exp (ωft)] , (7)

where ηft is the heat rate depicting the inverse of a fixed per-unit materials input requirement,

F (·) is a common technology across labor and capital with parameters β, and ωft is the

unobserved productivity term.34,35 Leontief (i.e. fixed-proportion) technology governs an

essential feature of the power generation process, where coal cannot be simply substituted

with more labor or capital.

I assume that coal and labor are static inputs that can be adjusted at time t, while

capital is dynamic and can only be changed through investment at time t − 1. Given coal

and labor are not substitutable, determining labor immediately implies choosing a quantity

of coal. Due to the institutional background shown in Section 2.2, I allow power plants to

have input market power over coal, which means once coal’s input quantity choice is made,

power plants set equilibrium coal input prices if the input supply is upward-sloping (Rubens,

2023).36 I therefore consider the associated Lagrangian function for power plant f :

Lft = PM
ft (Mft)Mft + PL

ftLft + PK
ftKft + λft

(
Qft −Qft (Mft, Lft, Kft, ωft)

)
, (8)

where PX
ft with X = {M,L,K} are input price for different inputs, and λft is the marginal

cost. Define power plant f ’s output price, i.e., on-grid power price, is Pft. Taking the first-

order condition with respect to coal, rearranging terms, and defining the coal markdown as

ψMft ≡
∂PM

ft

∂Mft

Mft

PM
ft

+ 1 and the markup as µft ≡ Pft

λft
, the markdown can be expressed as:37

ψMft =
1

αMft

(
1

µft
−
αLft
βL

)
, (9)

where αMft =
PM
ft Mft

PftQft
and αLft =

PL
ftLft

PftQft
are the revenue shares of coal and labor, and βL =

∂Qft

∂Lft

Lft

Qft
is the output elasticity of labor. The coal markdown, ψMft , measures the extent of

buyer power over the coal input market that plant f exerts at time t.

34The Leontief technology specification and cost minimization assumption for coal-fired power plants are
well fitted to the practical power generation and dispatching feature. Similar specifications are well adopted
in the literature; see Fabrizio et al. (2007), Gao and Van Biesebroeck (2014), Atkinson and Luo (2024),
Demirer and Karaduman (2024), among others.

35In estimation, an unobserved term of measurement error or unanticipated shocks in output will also be
specified.

36In this way, PM
ft can be expressed as a function of Mft, i.e., P

M
ft (Mft).

37Equivalently, I can express the markup as µft =

(
αM
ftψ

M
ft +

αL
ft

βL

)−1

.
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Hence, to calculate power plant-level coal markdowns, I need data on coal and labor

revenue shares (αMft and αLft), plant-level markups (µft), and the estimate of labor output

elasticity (βL), where the first is readily observed in the data.38 I set the markup to be

constant as in Rubens (2023), utilizing the institutional feature of the Chinese power market

regulation during the sample period, by which the government sets on-grid power prices

plant by plant based on their cost information (Lam, 2004; Ma, 2011).39 I let µft = 1 in

the main text.40 Finally, the output elasticity of labor requires estimating the production

function.

After I obtain power plant-level time-varying coal markdown measures (ψMft ), I first

aggregate it to provincial-level using the plant’s market share as weight: ψdt :=
∑
f∈Dd

sftψ
M
ft ,

where Dd is the set of power plants in province d and sft is power plant f ’s market share

in the same province. Then, I construct the provincial buyer power exposure (ψ̃ot) using

interprovincial coal railway freight volumes as weight. Specifically, ψ̃ot =
∑
d∈Θ

sodψdt.

Production Function Estimation. Now I show how to estimate the production func-

tion of power plants to obtain the output elasticity of labor (βL) in a two-stage estimation

procedure.

Taking the logarithm of the production function, Eq.(7), where lowercases refer to the

corresponding logarithmic variables, and allowing for an unobserved term ϵft, which cap-

tures measurement error in output or unanticipated shocks to production,41 the estimating

production function turns out to be:

qft = f(lft, kft;β) + ωft + ϵft. (10)

As coal is specified to be non-substitutable, it does not enter the above-estimating equation

directly; however, the Leontief specification implies a fixed-proportion rule in equilibrium

between coal and other inputs, i.e., ηftMft = F (Lft, Kft;β) exp (ωft), enabling a simple

38To be precise, considering the measurement error or unanticipated shocks in output, ϵft, what I observe

in the data is Q̃ft := Qft exp(ϵft), which leads to wrong measure of revenue shares. Fortunately, my
following production function estimation procedure will provide an estimate for ϵft, enabling me to correct

coal and labor revenue shares. Therefore, the corrected revenue shares should be α̂M
ft =

PM
ft Mft

PftQ̃ft/ exp(ϵft)
and

α̂L
ft =

PL
ftLft

PftQ̃ft/ exp(ϵft)
. I use the corrected input revenue shares to compute coal markdowns. De Loecker

and Warzynski (2012) indicates that eliminating measurement error when computing markups (markdowns
in my case) is crucial for measuring the wedges consistently. Treuren (2022) also highlights similar insights
when measuring input wedges.

39It is called “cost-plus” or “rate-of-return” regulation, which was common in the electricity generation
market, e.g., Cicala (2015) and Gowrisankaran et al. (2024), among others.

40See Appendix A for alternative calibrations.
41More precisely, I observe logged output qft = ln(Qft) + ϵft in the data, where ϵft are i.i.d. shocks

unobserved to firms when making their optimal input decisions.
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control for unobserved productivity: ωft = ln (ηft) + mft − f (lft, kft;β), as opposed to

relying on inverting optimal input demand function in classicial control function literature.42

Substituting the control function into Eq.(10) helps to extract the measurement error or

unanticipated shocks in output, ϵft, and purge it out in the first stage of the estimation

procedure.43

Specifically, I first project the quantity of electricity output on the quantity of coal

input and a plant-time specific heat rate factor, ηft. Following De Loecker and Scott (2022),

I approximate ηft by a nonparametric function of (mft, lft, kft, wft, p
M
ft ,Dft), where wft and

pMft are plant-level wage and coal input price, and Dft captures ownership dummies, year

dummies, region dummies, and interactions.44,45 The first stage specification, therefore, is:

qft = ηt
(
mft, lft, kft, wft, p

M
ft ,Dft

)
+ ϵft, (11)

where ηt(·) is a nonparametric function. I run Eq.(11) to obtain estimates of expected output

(η̂ft) and an estimate for ϵft.

In the second stage, I can compute productivity using ωft(β) = η̂ft− f(lft, kft;β) given

any value of β. I adopt a Cobb-Douglas specification for f(·) in the main text, which leads

to f(lft, kft;β) = βLlft + βKkft, where β = (βL, βK). To identify and obtain estimates of

production function coefficients, I consider a standard first-order Markov process, g(·), to
depict the law of motion for productivity:

ωft = g(ωft−1) + ξft, (12)

where ξft denotes innovation in the productivity process. Given β, therefore, I can recover

the innovation to productivity, ξft(β), by nonparametrically regressing ωft(β) on ωft−1(β).

I can now use the innovation, ξft(β), to construct moment conditions and estimate the

production function parameters β using standard generalized method of moments (GMM)

42Similar technological control functions for unobserved productivity have been used in the beer
(De Loecker and Scott, 2022) and car industries (Hahn, 2024). This control helps depart from the standard
working assumptions of perfectly competitive input and output markets (Olley and Pakes, 1996; Levinsohn
and Petrin, 2003; Ackerberg et al., 2015), allowing any form of competition in either market, which is
essential to my setup as I’m interested in consistently measuring the input market power of power plants.

43After the substitution, the estimating production function turns out to be: qft = ln (ηft) +mft + ϵft.
44The economic intuitions of the control function for heat rate are straightforward since many factors can

affect a plant’s heat rate: different amount and types of inputs (mft, lft, and kft) due to the start-up costs
and economies of scale, quality or proficiency of workers (wft), quality differentiation of coal input (pMft and
dummy variables in Dft), among others (interactions in Dft).

45Specifically, I use a third-order polynomial in the inputs, and interactions between the third-order input
terms and wage or coal input price. The dummy variables do not interact.
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techniques:

E

ξit(β)
 lit−1

kit

 = 0. (13)

The instruments’ exclusion restrictions come from the timing assumptions about labor and

capital inputs I set before, by which productivity innovation is orthogonal to the current

capital and lagged labor.

5.2 A Model of the Production-Safety Tradeoff in Coal Mining

The Production Technology. Unlike in the theoretical model of the coal mine’s production-

safety tradeoff as in Section 4.2, where I model the coal mine adopts different production

and safety inputs distinguishably, such output-specific input allocation schedule is rarely ob-

served in commonly available firm-level datasets in empirical studies, as noted by De Loecker

and Syverson (2021).46

Specifically, I do not have data on how coal mines allocate safety- and production-related

workers separately or how much they mechanize different parts of coal mining operations,

e.g., adopting coal-cutting machines for coal extraction or mine ventilation systems for safety.

Employing a widely used single-output production function for coal and ignoring safety

output would undoubtedly incur bias because not whole input bundles are used for producing

coal directly, while some inputs are for supporting the production in the background, as

demonstrated in Section 2.1 about the coal mining feature.

Instead of imputing the output-specific input allocation scheme for coal and safety, I

consider a transformation function, T (·), governing how the coal mine j assigns its productive

capacity between the two targeted outputs, i.e., the quantity of coal produced, Qjt, and the

safety level during the coal production process, Sjt, in the spirit of Grieco and McDevitt

(2017):47

T (Qjt, Sjt) = F (Kjt, Ljt,Mjt,Ωjt) , (14)

where production function F (·) describes how the firm-level capital, Kjt, labor, Ljt, material,

Mjt, and unobserved productivity, Ωjt, determine the overall productive capacity.

An explicit advantage of adopting the transformation function approach is that I can

allow joint or public inputs; that is, some inputs may be used in both coal and safety

generating processes simultaneously, which is essential for depicting coal mine production

46This echoes with a strand of literature on multi-product production function estimation (De Loecker et
al., 2016; Orr, 2022; Valmari, 2023). As the allocation of firm-level inputs across products is not available,
existing approaches in literature adopt different assumptions to impute the input allocation information. I
refer to De Loecker and Syverson (2021) for a detailed review.

47As coal is a relatively homogenous product, considering a transformation function in my case is free
from the production differentiation concern drawn by De Loecker and Syverson (2021).
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behavior accurately, as described and modeled in Section 2.1.48

Model Setup. Specifically, I adopt a parsimonious Cobb-Douglas transformation function

(in logs) as a benchmark specification49

ln (T (Qjt, Sjt)) = q̃jt + αss̃jt (15)

and a constant elasticity of substitution (CES) production function (in logs) with labor-

augmenting technology following Doraszelski and Jaumandreu (2018) as50

ln (F (Kjt, Ljt,Mjt,Ωjt)) =
σκ

σ − 1
ln
(
βKK

− 1−σ
σ

jt + [exp(ωLjt)Ljt]
− 1−σ

σ + βMM
− 1−σ

σ
jt

)
+ ωHjt.

(16)

Therein, q̃jt and s̃jt are logged expected coal output and safety level, αs represents the key

technological parameter governing the production-safety tradeoff, describing the coal mine’s

incentive to increase coal output by forgoing safety, κ is the returns to scale, σ denotes the

elasticity of substitution, and βK and βM are distributional parameters. I allow for both

Hicks-neutral productivity, ωHjt, as in the literature, and labor-augmenting productivity,

ωLjt, due to the fact of coal mines’ increased capital-to-labor ratio shown in Figure A2 in

Appendix A, for the coal mine j at time t.51

To estimate the production frontier empirically, I substitute Eq.(15) and Eq.(16) into

Eq.(14), and allow for measurement error (or unanticipated shocks) in both quantity and

safety as I only observe realized quantity, qjt := q̃jt+ ϵ
q
jt, and realized safety, sjt := s̃jt+ ϵ

s
jt, in

the data, where ϵqjt and ϵ
s
jt are i.i.d. shocks, rearranging safety-related terms to the right-hand

side, the estimating equation then is:

qjt = −αssjt +
σκ

σ − 1
ln
(
βKK

− 1−σ
σ

jt + [exp(ωLjt)Ljt]
− 1−σ

σ + βMM
− 1−σ

σ
jt

)
+ ωHjt + αsϵ

s
jt + ϵqjt.

(17)

However, estimating Eq.(17) directly with the coal mine’s input and output data using

GMM techniques or other nonlinear methods leads to inconsistent estimates. There are

48Existing multi-product production function estimation literature on imputing input allocation infor-
mation across products usually rules out public or joint inputs and physical synergies across products. See
De Loecker and Syverson (2021) and Orr (2022) for a detailed discussion and comparison.

49In Section 6.4, I further allow for the heterogeneity in the production-safety tradeoff, by which the slope
of the production-safety frontier could vary across mines depending on their technology or capital-to-labor
ratio.

50F (Kjt, Ljt,Mjt,Ωjt) = {βKK
− 1−σ

σ
jt +[exp(ωLjt)Ljt]

− 1−σ
σ +βMM

− 1−σ
σ

jt }
σκ
σ−1 exp(ωHjt) in level specifica-

tion. The CES production function nests the Leontief (σ → 0), Cobb-Douglas (σ = 1), and linear (σ → ∞)
production functions as special cases depending on the elasticity of substitution, σ.

51In theory, I can further allow for output-specific Hicks-neutral productivity following Dhyne et al. (2022),
which proposes a general two-equation system for estimating the transformation function of multi-product
production. As understanding differentiated output-specific efficiency is not the first-order interest of the
paper, I leave the extension to future research.
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two unobserved productivity terms, ωHjt and ωLjt, and measurement error of ϵsjt is also

correlated with sjt; all of them induce endogeneity issues. In addition, the identification

of αs could also be problematic if there is no independent variation of s̃jt from other vari-

ables in F (Kjt, Ljt,Mjt,Ωjt) as the coal mine makes safety choice with the initial states of

productivity being aware.

I address all these issues in detail as follows.

Timing and Decisions. I first illustrate the timing and decision-making for the coal mine,

which is necessary to be exploited to infer unobserved productivity differences, ωHjt and ωLjt,

and provide independent variation of s̃jt. Figure 3 shows the timing of decisions and how

states evolve.

t t+b t+1

kjt kjt kjt+1

(ωsHjt, ω
s
Ljt) (ωHjt, ωLjt) (ωsHt+1, ω

s
Lt+1)

II. Intra-period EvolutionE [ωHjt |Ijt]=E
[
ωHjt | ωsHjt

]
E [ωLjt |Ijt]=E

[
ωLjt | ωsLjt

]

I. Quantity and
Safety Decisions
q̃jt and s̃jt

III. Input and
Investment Decisions

mjt, ljt and ijt

IV. Production Occurs

q̃jt + ϵqjt and s̃jt + ϵsjt

V. New States RealizationE
[
ωsHjt+1 |Ijt+b

]
=E

[
ωsHjt+1 |ωHjt

]
E
[
ωsLjt+1 |Ijt+b

]
=E

[
ωsLjt+1 |ωLjt

]

Figure 3: Timing of Decisions

At the beginning of time t, the initial states, (kjt, ω
s
Hjt, ω

s
Ljt), are known to the coal

mine j, before any input decision is made. I denote the initial productivities, ωsHjt and ω
s
Ljt,

with a superscript s as it represents the productivities the mine observes when making the

safety decision (s for safety). Based on the initial states, the coal mine sets targeted output

level for coal and safety, (q̃jt, s̃jt),
52 to optimize its objective function as in Section 4.2, while

capital (kjt), decided at time t-1, remains fixed. One can think of this stage as the coal

mine making contracts with power plants based on its expected productivity, while actual

productivity will be revealed before production.53

52The choices of outputs are not modeled explicitly as I take them as given, which is innocuous to
following empirical estimation. Though, the intuitions of output choices embedded are consistent with what
I illustrated in Section 4.2, where taking coal output as given, and safety choice can be captured by a
reduced-form function as s̃jt = st(q̃jt, kjt, ω

s
Hjt, ω

s
Ljt).

53The specification aligns with China’s coal mining industry, as coal mines and power plants sign contracts
during the coal trade fair at the beginning of the year while producing and delivering coal in batches
afterward. During this, productivity evolves over time.
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During period t+b, which is in-between time t and t+1, the mine updates its pro-

ductivity beliefs to the actual productivities, ωHjt and ωLjt, following an exogenous Markov

process, E [ωHjt |Ijt]=E
[
ωHjt | ωsHjt

]
and E [ωLjt |Ijt]=E

[
ωLjt | ωsLjt

]
, where Ijt represents

the mine’s information set at the beginning of time t. With this updated information, the

mine decides labor (ljt) and material (mjt) inputs, as well as investment (ijt), with new

capital (kjt+1) becoming available at the start of the next period, t+1. Production occurs

afterward, which reveals the actual production outcomes, (qjt, sjt), where qjt = q̃jt + ϵqjt and

sjt = s̃jt + ϵsjt.

Finally, assuming productivity expectations follow a first-order Markov process, the

expected productivity difference for the next period are E
[
ωsHjt+1 |Ijt+b

]
=E

[
ωsHjt+1 |ωHjt

]
and E

[
ωsLjt+1 |Ijt+b

]
= E

[
ωsLjt+1 |ωLjt

]
, where Ijt+b captures the mine’s information set at

the intra-period t+b.

Unobserved Productivity Differences. There exists two unobserved productivity dif-

ferences, ωHjt and ωLjt. I first discuss how to control the unobserved labor-augmenting

productivity, ωLjt, by exploiting the coal mine’s first-order conditions for labor and mate-

rial.54 Let Yjt := QjtS
αs
jt denote the composite outputs for coal and safety. Suppose the coal

mine j minimizes variable costs to generate the given amount of outputs, Y jt. The mine’s

cost minimization problem is:

min
Ljt,Mjt

PL
jtLjt+P

M
jt Mjt s.t. {βKK

− 1−σ
σ

jt +[exp(ωLjt)Ljt]
− 1−σ

σ +βMM
− 1−σ

σ
jt }

σκ
σ−1 exp(ωHjt) ⩾ Ȳjt,

where PL
jt and P

M
jt are input prices for labor and material. The ratio of associated first-order

conditions with respect to labor and material gives
∂Yjt( · )
∂Ljt

/
∂Yjt( · )
∂Mjt

=
PL
jt

PM
jt
, rearranging terms,

finally leads to an explicit expression for the labor-augmenting productivity with observed

variables and estimable parameters:55

[exp(ωLjt)]
− 1−σ

σ = βM
PLjtLjt
PMjtMjt

(
Mjt

Ljt

)− 1−σ
σ

, (18)

using which I can substitute and control the unobserved ωLjt in Eq.(17).

Now, I introduce how to control the unobserved Hicks-neutral productivity, ωHjt, using

intermediate input (i.e. materials) to construct a proxy (Olley and Pakes, 1996; Levinsohn

and Petrin, 2003; Ackerberg et al., 2015). Specifically, based on the updated intra-period

states, the coal mine makes material (mjt) input decision, which is given by the conditional

54Using similar first-order conditions to control factor-augmenting productivity is widely adopted in the
literature on non-neutral production function estimation. See, e.g., Van Biesebroeck (2003), Doraszelski and
Jaumandreu (2018), Zhang (2019), and Demirer (2022), among others.

55See Appendix E for detailed derivations.
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material demand equation

mjt = mt(kjt, ljt, ωHjt, ωLjt, zjt), (19)

where the vector zjt includes all other variables that affecting the material demand (De Loecker,

2011; De Loecker and Warzynski, 2012; De Ridder et al., 2024). In my application, I collect

the exposed buyer power (ψ̃ot), output price, average wage, time-fixed effects, and dummy

variables of ownership and geography in the vector zjt.

Disscussion about zjt controls. I discuss about the inclusion of zjt here specifically.

De Ridder et al. (2024) propose to include prices, time-fixed effects, and market shares,

controlling for the conduct and demand conditions, under imperfect competition in the first

stage of the production function estimation, though they highlight that market share is not

a perfect control for markup and demand conditions in every case. Alternatively, I control

the coal mine’s exposed buyer power (ψ̃ot), which I measured in Section 5.1 without utilizing

any information from the coal mine, into the demand equation to directly control imperfect

competition and unobserved demand conditions in output markets, on top of controlling

output price variation. The direct inclusion of the buyer power exposure helps me depart

from assuming the classical monopolistic competition (De Loecker, 2011) or other widely

used competition models in output markets (Treuren, 2022; Ackerberg and De Loecker,

2024), while still satisfying the scalar unobserved assumption for the demand equation.56

In addition, the serially correlated average wage (labor price) is also included in the vec-

tor zjt to exploit lagged variable inputs as valid instruments later in estimation (De Loecker

and Warzynski, 2012; Gandhi et al., 2020). Conditional on the labor usage (in quantity),

the included labor price further controls the coal mine’s heterogeneity in labor quality. Fi-

nally, the time-fixed effects represent disembodied technical changes in the spirit of Olley

and Pakes (1996),57 and other remaining variables are different demand shifters of material

input to be controlled.

Inverting the static material demand equation gives the control function for the Hicks-

56An alternative option one can adopt in theory to accommodate imperfect competition in the context
of the control function approach is to directly include the entire “state vector” of market participants
in the demand input equation. Nevertheless, the problems are explicit in at least two folds, especially
in my application. First, not all the participants are observed, and even observed, inverting all firms’
productivity shocks as a function of all other firms’ choices is tricky. Second, too many market participants
easily lead to the curse of dimensionality and undermine the operation in practice. I refer to Ackerberg
and De Loecker (2024) for a detailed discussion about this and other existing approaches in the literature
estimating production function in the presence of imperfect competition. On top of these, they propose a
novel sufficient statistic approach to identify production functions under imperfect competition.

57Olley and Pakes (1996) employ a time trend term to capture the technical changes.

25



neutral productivity:58

ωHjt = ht(kjt, ljt,mjt, ωLjt, zjt), (20)

where ht(·) is a nonparametric function. Substituting Eq.(18) into Eq.(20) yields ωHjt =

ht(kjt, ljt,mjt,
PLjtLjt

PMjtMjt
, zjt), which I exploit to replace ωHjt in Eq.(17).

Measurement Errors. Two measurement error terms (or unanticipated shocks) for coal

quantity (ϵqjt) and safety level (ϵsjt) in Eq.(17) will bias the consistent estimation of the

production frontier. To resolve the concerns, I purge out the measurement error of coal

quantity (ϵqjt) using the control function approach, as introduced before, in the first stage of

the production function estimation procedure. In contrast, I address the measurement error

issue of safety (ϵsjt) by instrumenting for the mine-level accident probability, which is the

proxy for the coal mine’s safety level, with focal depth-weighted earthquake magnitudes. I

will elaborate more in detail later in the following subsection of estimation.

Safety Measure. I now turn to illustrate how to construct the mine-level safety measure,

the predicted coal mine’s accident probability.59,60 Specifically, as the coal mine makes its

safety choice s̃jt given the targeted coal output q̃jt, based on the initial states, (kjt, ω
s
Hjt, ω

s
Ljt),

at the beginning of time t, one can capture the mine’s safety choice by s̃jt = st(q̃jt, kjt, ω
s
Hjt, ω

s
Ljt).

Define the indicator function χjt to be equal to 1 if the mine happens an accident and 0

otherwise. Combining s̃jt and the control functions for ωHjt and ωLjt derived before, the

accident probability can be given by

Pr(χjt = 1) = Pr [ςjt ≥ ς̄jt(s̃jt, z̃jt)]

= ς(s̃jt, z̃jt)

= ς
(
q̃jt, kjt, ω

s
Hjt, ω

s
Ljt, z̃jt

)
(21)

= ς

(
kjt, ljt,mjt,

PLjtLjt
PMjtMjt

, ejt, z̃jt

)
≡ 1− sjt,

58As I use a static material control to proxy for productivity, I do not need to solve the complicated
dynamic programming problem for any dynamic input, which frees me from proving the invertibility property
for the input demand (De Loecker, 2011; Ackerberg et al., 2015; De Loecker et al., 2016).

59Note that “safety” can refer to many aspects in the coal mining context, e.g., the risk of coal mining
accidents, the health outcome of employees, or whether having a sound accident rescue system. I focus on
a specific safety dimension related to reducing coal mines’ accident risk, which is arguably the most crucial
concern for coal mine workers, owners, and policymakers.

60Since I can observe coal mine accident events, which contain casualty information, an alternative thought
is to exploit the casualty information directly to construct the mine-level death rate measure as the proxy
of safety level. However, as coal mining accidents are rare events overall, many observations are zero in
most years; however, zero death rates don’t necessarily mean high safety levels, as it can just because, for
example, the coal mine accidents didn’t cause death.
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where ςjt represents the mine-specific time-varying accident risk, ς̄jt denotes the maximum

risk resistance level conditional on its safety choice (s̃jt), and relevant state variables (z̃jt),

which consists of zjt and other safety-related variables, e.g., the coal mine’s age and year

dummy. ς(·) is a nonparametric function, and ejt is a vector consisting of the intra-temporal

i.i.d. shocks in productivity.61

If the mine-specific accident risk is higher than the maximum risk resistance level, a

coal mining accident would happen. Hence, sjt measures the negative accident probability.

In estimation, I use a flexible fourth-order polynomial in (kjt, ljt,mjt,
PLjtLjt

PMjtMjt
) with a second-

order polynomial in all elements of z̃jt as regressors in a probit estimation in the spirit of

Olley and Pakes (1996).62

Instrumenting for the Safety. I rely on the focal depth-weighted earthquake magni-

tudes to instrument for sjt to address the measurement error issue in safety. Chen (2020)

finds almost half of coal mine accidents in China were accompanied by earthquakes nearby

that caused stress disturbances. Earthquakes are natural and exogenous events that are

nearly unaffected by other economic activities, enabling them to satisfy exclusion restriction

requirements and be a valid IV for instrumenting the coal mine’s accident probability when

controlling all other production-related variables in Eq.(17).

Estimation Procedures. I now turn to the details of estimating the production frontier

in a two-step estimation procedure.

Substituting the control functions of the labor-augmenting and Hicks-neutral produc-

tivity, Eq.(18) and Eq.(20), respectively, into Eq.(17), denoting xjt =
{
kjt, ljt,mjt,

PLjtLjt

PMjtMjt

}
to save notations, the first-stage estimating equation is:

qjt = −αssjt + ϕt(xjt, zjt) + ϵjt, (22)

where ϕt(xjt, zjt) = κ ln(Mjt)+
σκ
σ−1

ln

(
βK
βM

(
Kjt

Mjt

)− 1−σ
σ
+
(
1+

PLjtLjt

PMjtMjt

))
+ σκ
σ−1

ln βM+ht(xjt, zjt)

and ϵjt = αsϵ
s
jt+ ϵqjt. See Appendix E for detailed derivations. Note that the safety choice is

sjt = st(·, ωsHjt, ωsLjt), while the optimal intermediate input demand ismjt = mt(·, ωHjt, ωLjt).
The intra-period evolutions of Hicks-neutral and labor-augmenting productivity, following

the exogenous Markov process, update the information sets and provide independent varia-

tion between st(·) and ϕt(·) to identify αs.

First-stage Estimation: Identifying the Production-Safety Tradeoff. To estimate Eq.(22)

consistently, I first approximate the function ϕt(·) with a flexible polynomial in all its vari-

61More explicitly, one can write the intra-evolution of productivity as ωHjt =E
[
ωHjt | ωs

Hjt

]
+ ϵωH

jt and

ωLjt=E
[
ωLjt | ωs

Ljt

]
+ ϵωL

jt , where ϵ
ωH
jt and ϵωL

jt are i.i.d. shocks. Hence, ejt = (ϵωH
jt , ϵ

ωL
jt ).

62The dummy variables enter the estimating regression linearly.
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ables in (xjt, zjt).
63 I run a two-stage least squares (2SLS) regression afterward using the

exogenous provincial focal depth-weighted earthquake magnitudes as the IV for sjt. The

validity of earthquake IV is natural in the sense that earthquakes are relevant to coal mines’

safety levels in China, as indicated by the findings of (Chen, 2020), and serve as a natural

exogenous supply shifter.

The first-stage estimation provides a consistent estimate of αs and purges the compos-

ite measurement errors or unanticipated shocks, ϵjt, and ultimately, yields an estimate of

predicted composite output, ϕ̂jt. I can, therefore, express the Hicks-neutral productivity as:

ωHjt(θ) = ϕ̂jt − κ ln(Mjt)−
σκ

σ − 1
ln

(
βK
βM

(
Kjt

Mjt

)− 1−σ
σ

+

(
1+

PLjtLjt
PMjtMjt

))
− σκ

σ − 1
ln βM ,

(23)

where θ = (κ, σ, βK
βM

). Without loss of generality, I let βK = 1 − βM following Doraszelski

and Jaumandreu (2018).64

Second-stage Estimation: Identifying the Production Parameters. Relying on the law

of motion of the Hicks-neutral productivity, which follows

ωHjt = g
(
ωHjt−1, ψ̃ot−1;βg

)
+ ξjt, (24)

where βg is the vector of parameters in the productivity process g(·), which are estimated

alongside θ, and ξjt refers to the innovation in the productivity shock that I use to form

moments for estimating production function coefficients. I explicitly include the lagged

exposed buyer power (ψ̃ot−1) in the productivity process following De Loecker (2011, 2013)

to allow for market power effects on productivity to take place, if any.65 In particular, ∂g(·)
∂ψ̃ot−1

informs whether and how would past buyer power impacts a firm’s future productivity. The

identification of the buyer power effects comes from the timing assumption, as illustrated in

Figure 3, in which the buyer power information was realized prior to the coal mine receiving

63Specifically, I use a fourth-order polynomial in all elements in xjt and their interactions with a second-
order polynomial in zjt. All dummy variables enter linearly.

64Note that βK and βM are not separately identified without such parametric restrictions. However,
the non-identification result of βK and βM would not hurt the identification of output elasticities of the
production frontier because the ratio of βK and βM , i.e., βK

βM
, is still identified. I obtain indifferent output

elasticities regardless of whether I impose such parametric restrictions. See Demirer (2022) for a detailed
discussion and proof about different parameters’ (non-)identification results in a general nonparametric
production function setup, to which my CES specification is a special case. Nevertheless, the cost of such
generality is the non-identification of the elasticity of substitutions, which is one of my key interests to be
investigated in empirics.

65Note that the endogenous productivity process g(·) doesn’t presuppose the existence of buyer power
effects; oppositely, it nests the exogenous productivity process as a special case. One would expect non-

significant estimates for the added endogenous variables (i.e., ψ̃ot−1 in my case) if the true date-generating
process for productivity is exogenous to it. I report relevant estimates in Section 6.3.
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the updated productivity shock.66

Specifically, I obtain the productivity innovation by nonparametrically regressing ωHjt(θ)

on ωHjt−1(θ), and form moments that identify the parameters, using a GMM estimator:

E

ξjt(θ)


ljt−1

mjt−1

kjt


 = 0. (25)

As the timing assumptions elaborated, the firm makes labor and material input decisions

after the actual productivity is realized at time t+b, while capital investment is chosen at

time t–1. Hence, the productivity shock is orthogonal to lagged labor and material usage

and current capital stock.

5.3 Empirical Strategy

Estimating Equation. My baseline empirical specification starts with regressing coal

mining death rates in province o at year t, Deathot, on the buyer power exposure variable,

ψ̃ot, controlling for province-fixed effects γo and year-fixed effects γt, at the provincial level:

lnDeathot = β ln ψ̃ot + x′
otγ + γo + γt + εot, (26)

where xot captures time-varying provincial characteristics, including provincial coal output

and transport capacity. ψ̃ot measures the aggregate exposed buyer power from power plants,

which I construct from the power plant-level buyer power measure (ψMft ), weighted by in-

terprovincial coal railway freight volumes. More details will be elaborated in Section 5.1.

By controlling the province-fixed effects, Eq.(26) isolates within-province variations in the

death rates and buyer power exposure to identify the coefficients of interest.

I further use a variation of Eq.(26) with coal mine-fixed effects (γj) at the coal-mine

level

lnYjot = δ ln ψ̃ot + x′
jotγ + γj + γt + εjot, (27)

where Yjot are coal mine-level outcome variables, and xjot includes xot and other coal-mine

level characteristics depending on different specifications. The coefficient of δ is identified

from the correlation between the average growth rate of Yjot across all mines in province o

and the change in exposed buyer power with respect to province o.

66This implies that E(ξjt · ψ̃ot−1) = 0. Note that ξjt is a composite innovation term that consists of two
i.i.d. shocks from stages of “new states realization” and “intra-period evolution”, respectively, as in Figure

3, where both innovations are orthogonal to ψ̃ot−1.
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Instrumenting for the Buyer Power Exposure. However, estimating these equations

with ordinary least squares (OLS) leads to biased estimates if the buyer power exposure

is endogenous. For example, increased electricity demand due to positive demand shocks

(e.g., WTO accession) could incur more coal demand and supply, causing higher coal mining

death rates and affecting buyer power. An alternative source of endogeneity could be the

measurement of buyer power exposure is subject to error, resulting in attenuation bias.

To address the endogeneity issues, I construct a shift-share IV, zot, for province o’s

buyer power exposure by combining residual national coal demand of province d (excluding

purchases from province o), G
(o)
dt (the shifters), with interprovincial transportation patterns

of past coal freight volumes, sod (the shares).67 Concretely,

zot =
∑
d∈Θ

sodG
(o)
dt , (28)

where Θ denotes the set of provinces, sod is the export share of coal sold to province d in

total coal sales for province o in the initial-sample year (Borusyak et al., 2022), and

G
(o)
dt =

∑
o′∈Θ\{o}

Qo′dt (29)

withQo′dt capturing the amount coal that province d bought from province o′ ∈ Θ\{o} at year
t. I further adjust Qo′dt to be the coal sold specifically to the power generation sectors using

key state-owned coal mines’ inter-provincial and sectoral sales (in quantity) to construct

weight. The adjustment explicitly attempts to absorb power market-related demand-side

exogenous shocks. Nevertheless, the results remain robust regardless of adjustments, as seen

in Section 6.4.

The shift-share IV exploits variations from two sources. First, provincial demand-side

shocks in coal consumption from the coal-fired power generation sector (the shifters) predict

variations in buyer power from coal-fired power plants in these provinces. Second, coal

mines in coal-selling provinces tend to be exposed to more buyer power from power plants

in coal-buying provinces with which they have sold more coal in the past (the share). I

follow Borusyak et al. (2022) to assume that the shifters (demand-side shocks from power

plants) are conditionally orthogonal to coal mining industry outcomes, allowing the shares

(historical coal selling patterns) to be endogenous.

Threats to Identification. For an instrument to be considered valid, it must shift coal

demand without influencing coal mines other than through the buyer power channel. Suppose

67o for “origin” (coal-selling province) and d for “destination” (coal-buying province).
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a rise in G
(o)
dt for province d is not only due to changes in province d’s demand shocks but

also reflects shocks to supply in province o. For example, safety regulations in the coal

mining industry of province o, such as shutting down small coal mines or restricting coal

production, could reduce coal mining death rates and increase G
(o)
dt . I deal with this concern

by incorporating the provincial total coal output in xot to control for time-varying supply

shocks in province o.

In addition, shocks to transportation patterns might also affect the coal supply from

province o.68 A newly constructed railway or oppositely insufficient transport capacity due

to imperfect railway scheduling could also cause either an increase or decrease in G
(o)
dt and

ambiguous change in the coal supply. Thus, I control the provincial transport capacity for

different types of transportation, e.g., railways, waterways, and roads, in xot. Note that sod

also incorporates information on transportation patterns, but it would not affect consistency

as the exposure shares are allowed to be endogenous (Borusyak et al., 2022). Nevertheless, I

use data from the initial sample year to calculate sod to fix transportation patterns and thus

focus on buyer power’s role in my empirics.

6 Empirical Results

This section provides the estimation results from the empirical models. I start by illustrating

the estimated coal price markdowns and the evolution of buyer power of power plants. Sec-

ond, I present the production function estimates of coal mines and nonparametric estimates

of buyer power on productivity. Finally, I use these estimates to implement the empirical

strategy. The aim is to identify and understand how buyer power affects the organization of

coal mine production.

6.1 The Evolution of Buyer Power

Panel A of Table 2 presents the estimated production function coefficients of power plants

for both specifications using OLS and the control function approach, i.e., GMM. The second

column shows the output elasticities of labor (0.409) and capital (0.847) estimated using the

control function approach. In contrast, the OLS method in the first column overestimates

the output elasticity of labor (0.458) and underestimates the output elasticity of capital

(0.637). Both specifications imply a capital-intensive nature and increasing returns of scale

for power plants (1.095 and 1.256), which aligns with findings in the broad literature on

68Note that the transport costs would not affect the coal supply due to the context of the regulated
railway industry and the priority of coal transportation as mentioned in Section 2.2.
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electric utilities.69

Table 2: Model Estimates of Power Plants

Estimation Method

(1) (2)

OLS GMM

Panel A: Production function

Labor 0.458*** 0.409***
(0.029) (0.118)

Capital 0.637*** 0.847***
(0.026) (0.054)

Returns to scale 1.095*** 1.256***
(0.018) (0.080)

Observations 5,315 5,315

Panel B: Coal price markdown

Median 1.096*** 1.077***
(0.016) (0.076)

Average 1.159*** 1.136***
(0.018) (0.088)

Notes: The returns to scale coefficients sum up the corresponding
capital, labor, and material coefficients. Standard errors are computed
by bootstrapping 200 times. ***: p<0.01; **: p<0.05; *: p<0.1.

Based on the different production function estimates, the coal price markdowns are in

Panel B of Table 2. The second column is the preferred specification. One can note that,

at the median power plant, the coal price markdown is 1.077, while the average coal price

markdown is 1.136, which means that power plants, on average, procure coal at a price 12%

below its marginal revenue product of coal.70 Though it’s not very comparable for markdown

estimates across industries, the average markdown estimate is in line with other studies that

also measure buyer power in material input markets, e.g., Treuren (2022) and Avignon and

Guigue (2022), and is sensibly milder than that in Rubens (2023) which studies on more

restricted oligopsony markets.

To illustrate the evolution of buyer power, I regress the coal price markdown on power

plant- and year-fixed effects, where standard errors are clustered at the prefectural level.

Figure 4 plots the coefficients of different year dummies, where 2001, the year prior to

the electricity sector restructuring announced, is normalized to zero. Two key patterns

emerge. First, there were rich time-series variations in the coal price markdowns to enable

69See Nerlove et al. (1961), Atkinson and Primont (2002), Atkinson (2019), and Atkinson and Luo (2024),
among others.

7012% = 1− 1
1.136 .
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the identification of the buyer power effect. Second, the coal price markdown was relatively

stable before 2003 and became more volatile afterward, slumping by 7.7 percentage points on

average in 2004 and onwards. The time-series variations pick up well the shock of electricity

sector restructuring, which corresponds with the literature and anecdotal evidence that the

restructuring did take several years to materialize (Gao and Van Biesebroeck, 2014).71 The

evolution of coal price markdowns is very robust to different markup calibrations, as seen in

Figure A3.
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Figure 4: The Evolution of Coal Price Markdowns

Notes: I normalize the year before the announcement of the electricity sector restructuring to zero with
omitted confidence intervals. Standard errors are clustered at the prefectural level. 95% confidence intervals
in dashed lines are shown.

6.2 Production Function Estimates

Table 3 reports the estimates of the transformation function of coal mines. The second col-

umn is the preferred specification, while the first column presents the estimated parameters

using OLS for comparison.

Both specifications provide evidence of a statistically significant production-safety trade-

off, showcasing that coal mines seriously consider safety when making production decisions.

However, the magnitudes of the tradeoff coefficient differ substantially between the struc-

tural model (-0.038) and naive OLS (-0.007), highlighting the importance of addressing the

71Gao and Van Biesebroeck (2014) indicates that the restructuring and vertical unbundling in the elec-
tricity sector finished around 2004, as power plants’ ownership types kept changing until then.
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Table 3: Model Estimates of Coal Mines

Estimation Method

(1) (2)

OLS Model

Safety −αs -0.007*** -0.038***
(0.001) (0.011)

Output elasticity of capital θKjt 0.051*** 0.254***
(0.004) (0.001)

Output elasticity of labor θLjt 0.152*** 0.126***
(0.017) (0.001)

Output elasticity of material θMjt 0.749*** 0.391***
(0.021) (0.001)

Returns to scale κ 0.952*** 0.771***
(0.004) (0.025)

Elasticity of substitution σ 2.270***
(0.474)

Observations 20,144 20,007

Notes: The returns to scale coefficient for the OLS specification is summing up
over its capital, labor, and material coefficients, while its elasticity of substitution
is 1, per the Cobb-Douglas specification. Column (2) reports the model’s mean
output elasticities of capital, labor, and material. Standard errors are computed
by bootstrapping 200 times. ***: p<0.01; **: p<0.05; *: p<0.1.

endogeneity problems when estimating the production function for coal mines. Specifically,

the estimate of the production-safety tradeoff, αs, from the structural model, is -0.038, which

means a coal mine that targets to reduce accident probability by 1 percentage point would

need to forgo its coal production by 3.8%. This corresponds to an elasticity of coal output

with respect to safety of -3.76 at the median and -3.72 at the mean. Put differently, a coal

mine could increase its coal output by 1% by reducing the safety level such that its accident

probability rises by 0.26 percentage points, holding others fixed.72 The significant tradeoff

between safety and production in coal mining is consistent with Gowrisankaran et al. (2015).

The mean output elasticities of capital, labor, and material are 0.254, 0.126, and 0.391,

respectively, from the structural model. The OLS method, as often found in the production

function literature, underestimates the capital coefficient (0.051) and overestimates the labor

coefficient (0.152), while the material coefficient is 0.749. Both specifications indicate that

coal mines are relatively material-intensive, which aligns with the coal mining industry’s fea-

ture that consumables such as pitwood and gunpowder account for a substantial proportion

of input expenditure.

The returns to scale coefficients are 0.952 and 0.771, respectively, for specifications of

720.26 p.p. = 1
3.8 .
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OLS and model, reflecting decreasing returns to scale in the coal mining industry. A decreas-

ing returns to scale coefficient is familiar in the (single-output) production function literature

(Collard-Wexler and De Loecker, 2015; Allcott et al., 2016), while also fits well with the na-

ture of a multi-output production process, as the extra complexity and coordination costs

embedded could render decreasing returns to scale. Finally, the elasticity of substitution

is 2.270, greater than unity, primarily showcasing that material and capital are gross sub-

stitutes with each other, which matches well with the mining technological characteristics

as mentioned in Section 2.1, and also corresponds to recent findings about a higher than

unity elasticity of substitution in the context of Chinese industries using different methods

(Berkowitz et al., 2014; Grieco et al., 2022; Li and Zhang, 2022; Meng et al., 2023).

Nonparametric Estimates of Buyer Power on Productivity. Alongside estimat-

ing production function coefficients, I obtain the nonparametric estimates of buyer power

on Hicks-neutral productivity at the same time, as shown in Eq.(24). Regarding labor-

augmenting productivity, note that I do not impose any restrictions on its evolution other

than the classical first-order Markov process assumption, as the unobserved labor-augmenting

productivity is replaced by corresponding first-order conditions, i.e., Eq.(18), and disap-

peared in the estimating equation. It is, therefore, flexible to any complex productivity

dynamics on top of the first-order Markov process.73 For comparison with Hicks-neutral

productivity, I start by assuming that labor-augmenting productivity follows an analogous

process as ωHjt = g
(
ωHjt−1, ψ̃ot−1;βg

)
+ ξjt. I approximate both productivity processes by

a third-order polynomial in productivity and their interactions with buyer power exposure

and test whether the endogenous productivity process is plausible.

Table 4 presents the buyer power effects on productivity. Three interesting results

emerge. First, the F -tests on the joint significance of all parameters for buyer power-related

variables show that it is essential to incorporate buyer power into account as it can affect

future Hicks-neutral and labor-augmenting productivity, which both reject an exogenous

productivity process.

Second, buyer power exposure affects future productivity in heterogeneous ways with

respect to different types of productivity. For Hicks-neutral productivity, as the interac-

tion terms of buyer power and productivity are significant, the effects of buyer power vary

substantially depending on the coal mine’s productivity. Coal mines with high productiv-

ity would suffer more from the imperfect competition, which corresponds to Backus (2020)

that finds firms in the upper productivity quantiles have higher productivity gains when

73A recent paper by Caselli et al. (2024) proposes a novel method to study productivity and quality
for multi-product firms without imputing intra-firm input allocations and allows for flexibility in exploring
complex productivity dynamics after estimation, which shares similar insights.
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Table 4: Buyer Power Effects on Productivity

(1) (2) (3)

ωHjt ωLjt ωLjt

Productivity 0.271*** 0.758*** 0.729***
(0.038) (0.017) (0.007)

Productivity2 0.061*** 0.023*** 0.022***
(0.018) (0.005) (0.002)

Productivity3 0.009** -0.017*** -0.014***
(0.004) (0.001) (0.001)

Buyer power exposure, ln ψ̃ot−1 -1.982*** -0.138* -0.194***
(0.186) (0.083) (0.058)

ln ψ̃ot−1 × Productivity 0.976*** -0.113*
(0.132) (0.063)

ln ψ̃ot−1 × Productivity2 0.195*** 0.003
(0.056) (0.018)

ln ψ̃ot−1 × Productivity3 -0.107*** 0.012**
(0.013) (0.005)

Average effect (in percent) -0.216 -0.195 -0.194

Observations 13,393 24,711 24,711

F -test F (4, 13385) = 36.71 F (3, 24703) = 2.27 F (1, 24706) = 11.07

p-value 0.000 0.079 0.001

Notes: The F -test is on the joint significance of the coefficients from all buyer power-related variables.
The corresponding p-value of the test is reported below. Column (2) reports the F -test on the joint
significance of all interaction terms with buyer power, while including buyer power per se leads the
F -test result to be F (4, 24703) = 4.47. ***: p<0.01; **: p<0.05; *: p<0.1.

facing competition. In contrast, I do not find significant estimates for any interactions with

labor-augmenting productivity at 1% significance level, as seen in column 2. The F -test of

the joint significance of the interactions is also barely significant at 10% significance level.

That said, buyer power affects labor-augmenting productivity directly and (log-)linearly re-

gardless of the heterogenous productivity levels. The findings of heterogeneous buyer power

effects on productivity are novel in the literature but sensible as they imply heterogeneous

technological changes.

Third, holding fixed productivity, columns 1 and 3 present that a 1% increase in the

buyer power exposure leads to, on average, a decrease in future Hicks-neutral and labor-

augmenting productivity by 0.22% and 0.19%, respectively. This finding is consistent with

frequently observed results in the productivity literature, which finds that competition boosts

firms’ efficiency.74

74I refer to Backus (2020) for a detailed review.
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6.3 Death by Market Power and Beyond

Death Rates. Table 5 presents estimates of Eq.(26) for the death rates in the coal mining

industry. The dependent variable is logged death rates due to coal mining accidents, and

I control the provincial coal physical output on the right-hand side so that the estimates

correspond to absolute casualty effects.

Table 5: Buyer Power Effects on Coal Mining Death Rates

lnDeathot (1) (2) (3)

Buyer power exposure, ln ψ̃ot 0.798*** 3.865** 4.549**
(0.287) (1.555) (2.077)

Method OLS 2SLS 2SLS

First stage F-statistic 22.33 11.61

Observations 176 176 176

Notes: Column (1) reports the OLS results, while columns (2)-(3) present
the 2SLS results. Therein, provincial coal physical output and province-
and year-fixed effects are controlled for all columns. Column (3) further
controls transportation patterns. Robust standard errors are reported in
the parentheses. ***: p<0.01; **: p<0.05; *: p<0.1.

Specifically, the 2SLS IV estimate in column 2 indicates that a 1% increase in the buyer

power exerted by power plants causes coal mines to encounter 3.87% more deaths, conditional

on coal production. In contrast, the OLS point estimate (0.8%) strongly underestimates the

effects of buyer power on death. It is consistent with the expected biased directions due to

either measurement error or omitted positive demand shocks/negative supply shocks. By

further controlling transport characteristics, column 3 shows a slightly larger IV estimate

than column 2, meaning the exposed buyer power in the coal mining industry increases

by 1% would incur the death rate increase by 4.55%. The larger estimate in column 3

suggests that transport capacity negatively correlates with buyer power exposure. In Section

6.4, I conduct a robustness check using different definitions of death rates, and it presents

qualitatively consistent estimates.

Using the fact that the mean casualties caused by coal mining accidents in each province

are 243, the point estimate suggests that a 1% increase in buyer power exposure increases

the number of deaths by 4.55% × 243 ≈ 11 people per province a year, holding the coal

production quantity fixed. Put differently, given that the mean coal production output is

around 70 million tons per province, a coal-producing province exposed to one more percent

buyer power increases its death rate by 4.55% × 243/70 ≈ 0.16 deaths per million tons of

coal production.
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Outputs of Coal and Safety: Coal Mine Level. I now directly examine the buyer

power effects on the coal mine’s outputs at the coal mine level. I first construct a provincial

coal mining death rate counterpart measure (in logs) at the coal mine level, i.e., the safety-

coal output ratio (sjt − qjt).
75 Estimating Eq.(27) using the safety-coal output ratio as a

dependent variable, I control a flexible fourth-order polynomial in all variables in (xjt, zjt)

other than the exposed buyer power (ψ̃ot), adding provincial characteristics xot on top of the

firm- and year-fixed effects. Standard errors are clustered at the prefectural level, which is

the highest level I can cluster.76

Table 6 shows the estimated coal-mine level buyer power effects on coal and safety

outputs. Column 1 shows that higher buyer power exposure significantly induces lower

safety-coal output ratios, consistent with higher coal mining death rates at the provincial

level, as seen in Table 5. The point estimate of the safety-coal output ratio is larger in

magnitude than that of the provincial coal mining death rate. This makes sense as the

coal mine-level safety measure would cover broader safety dimensions, e.g., injury, than only

casualties, as captured by the provincial death rate.

Table 6: Buyer Power Effects on the Coal Mine’s Outputs

(1) (2)

sjt − qjt qjt

Buyer power exposure, ln ψ̃ot -10.078*** -0.686*
(2.234) (0.352)

Method 2SLS 2SLS

First stage F-statistic 51.90 8.36

Observations 18,390 18,274

Notes: Firm- and year-fixed effects are controlled, while all con-
trol variables are omitted from the reported results. Column 2
controls safety and instruments it using provincial focal depth-
weighted earthquake magnitudes. Standard errors are clustered
at the prefectural level. ***: p<0.01; **: p<0.05; *: p<0.1.

I further present the effects of buyer power on coal output. In column 2, I directly regress

coal output on buyer power exposure with safety being controlled. As in the estimating

equation of production function, Eq.(22), safety measures incur measurement errors and

lead to endogeneity issues. I instrument it using the same provincial focal depth-weighted

earthquake magnitudes. The estimates show that, holding safety and inputs fixed, a 1%

increase in buyer power exposure decreases coal output by 0.69%. This finding aligns well

75Higher coal mining death rate maps to lower safety-coal output ratio and vice versa.
76Note that the groups of provinces (#province = 22) are too few to be clustered to obtain consistent

standard errors.

38



with the classical IO theory, as buyers can exert their market power by withholding input

purchases. The impact of buyer power on output (or input, proportionally) is also in line with

some empirical studies in magnitudes, e.g., Rubens (2023), though in different industries.77

Overall, both coal mine-level and provincial evidence consistently indicate that higher

buyer power results in lower safety levels and more deaths, whereas lower buyer power

exposure contributes to better safety outcomes and fewer deaths. I now turn to disentangle

the underlying mechanism behind it.

Technological Changes. The buyer power induced more coal mining deaths and lower

productivity, both Hicks-neutral and labor-augmenting productivity, reflecting embedded

technological changes. To check this, I first investigate how buyer power affects the coal

mine’s input adoptions, as seen in Table 7. Each input column controls the other two inputs

in the input bundle {kjt, ljt,mjt}. I also control
PLjtLjt

PMjtMjt
in the spirits of control functions for

Hicks-neutral and labor-augmenting productivity, on top of provincial characteristics xot and

firm- and year-fixed effects like other specifications. Column 1 shows that increasing buyer

power exposure by 1% significantly induces a decline in capital adoption by 1.67%, holding

other inputs fixed. In contrast, both labor and material inputs are mute in response to the

buyer power exposure, as seen in Columns 2 and 3. The result is intuitive as capital adoption,

such as better excavation machines or enhanced ventilation systems, requires substantial

upfront investments, especially disincentivized once profit margins are squeezed when coal

mines face higher buyer power exposure. This empirical finding is consistent well with

Proposition 1 in Section 4.3. Of course, cost of capital may straightforwardly speak to

capital adoption, but I will leave that for a detailed discussion in the following subsection.

I also check the coal mine’s adjustments in input intensity margin. The relative input

intensity reflects the composition of technological changes immediately, as seen in Section

2.1 that different types of technology have distinct input intensity features, which can help

to infer the potential technology adopted by coal mines. Table 8 presents the buyer power

effects on the coal mine’s input intensity. Column 1 demonstrates that a 1% increase in buyer

power exposure leads to a significant 1.23% reduction in the capital-to-labor ratio, which

aligns with Proposition 1 in Section 4.3. Conversely, the capital-to-material and material-

to-labor ratios, as shown in Columns 2 and 3, exhibit a reduction in point estimate but no

significant response to changes in buyer power.

Note that the capital adoption is found to be reduced in response to increased buyer

power exposure in Table 7, but only the capital-labor intensity is adjusted significantly

77Rubens (2023) studies a consolidation policy in China’s tobacco industry and finds that, on average,
consolidation increases manufacturers’ markdowns by 37%, and aggregate cigarette production falls by 38%
accordingly.
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Table 7: Buyer Power Effects on Input

(1) (2) (3)

lnK lnL lnM

Buyer power exposure, ln ψ̃ot -1.663*** -0.317 -0.425
(0.625) (0.344) (0.843)

Method 2SLS 2SLS 2SLS

First stage F-statistic 47.63 47.28 47.14

Observations 18,431 18,431 18,431

Notes: Each input column controls the other two inputs in the input
bundle {kjt, ljt,mjt}. PLjtLjt

PMjtMjt
, provincial characteristics xot, and firm-

and year-fixed effects are controlled for all columns, but are omitted from
the reported results. Standard errors are clustered at the prefectural
level. ***: p<0.01; **: p<0.05; *: p<0.1.

but not capital-material intensity, as seen in Table 8. Combining the specific technological

features of different mining technologies from Table 1, the underlying mechanism appears:

buyer power reduces the coal mine’s capital adoption and shifts the mining technology to be

less capital-intensive with respect to labor but not material. The reduced capital-to-labor

ratio reflects the transition from relatively modern to traditional technology. In contrast, no

significant reduction in capital-to-material ratio is observed, indicating the technical switch-

ing could only be from the conventionally-mechanized mining method to the blasting mining

method, which tends to be more dangerous by nature, suggesting higher death rates. In Sec-

tion 6.4, I allow for the heterogeneity in the production-safety tradeoff concerning technology

and capital-to-labor ratio, which further corroborates what I find here.

Table 8: Buyer Power Effects on Input Intensity

(1) (2) (3)

lnK/L lnK/M lnM/L

Buyer power exposure, ln ψ̃ot -1.234** -0.990 -0.182
(0.518) (0.904) (0.804)

Method 2SLS 2SLS 2SLS

First stage F-statistic 47.87 47.59 47.25

Observations 18,431 18,431 18,431

Notes: Each input intensity column controls the remaining input in
the input bundle {kjt, ljt,mjt}. PLjtLjt

PMjtMjt
, provincial characteristics xot,

and firm- and year-fixed effects are controlled for all columns, but are
omitted from the reported results. Standard errors are clustered at the
prefectural level. ***: p<0.01; **: p<0.05; *: p<0.1.
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Cost of Capital. In the theoretical model in Section 4.2, I assume that buyer power

can affect the cost of capital with ∂r(b)
∂b

> 0, i.e., an increase in buyer power exposure leads

to higher cost of capital, resulting in Corollary 1 in Section 4.3. Though the cost of capital is

unobserved, the assumption is verifiable indirectly in empirics by inferring from the relative

output elasticity of inputs.

To see this, one can derive that, under the cost minimization, a firm’s output elasticity

of a flexible input, e.g., labor L, without adjustment cost and input market power can

be expressed as θL := µP
LL
PQ

, where µ is the firm-level markup, PL and P are input and

output prices, respectively, and Q is output. See De Loecker and Warzynski (2012) for a

detailed derivation. I omitted all subscripts for succinct. Denote a quasi-fixed input K.

One can treat it as if it’s a flexible input to write out the first-order condition and express

the corresponding output elasticity as θK := µν P
KK
PQ

with an additional term ν to capture

all capital-relevant distortions, e.g., adjustment cost, financial friction, capital input market

power, etc. Dividing θK by θL, one can obtain θK

θL
= νPK

PL
K
L
. Therefore, conditional on

capital-to-labor ratio K
L
and labor input price PL, one can infer the distortion-absorbed cost

of capital P̃K := νPK by checking the relative output elasticity θK

θL
.78 Table 9 presents the

buyer power effects on the coal mine’s relative output elasticity for capital and labor.

Table 9: Buyer Power Effects on Relative Output Elasticity

(1) (2) (3)

ln θKjt/θ
L
jt ln θKjt/θ

L
jt ln θKjt/θ

L
jt

Buyer power exposure, ln ψ̃ot 0.572 1.269** 0.478**
(0.588) (0.590) (0.204)

Capital-to-labor ratio, lnK/L 0.568*** 0.700***
(0.016) (0.007)

Wage per worker, lnPLjt -0.944***
(0.004)

Method 2SLS 2SLS 2SLS

First stage F-statistic 47.94 47.80 47.67

Observations 18,447 18,431 18,427

Notes: mjt,
PLjtLjt

PMjtMjt
, provincial characteristics xot, and firm- and year-fixed

effects are controlled for all columns but are omitted from the reported results.
Standard errors are clustered at the prefectural level. ***: p<0.01; **: p<0.05;
*: p<0.1.

Column 1 shows that the capital and labor’s relative output elasticity as a whole doesn’t

78Similar insights have been adopted to infer input market wedges when comparing relative output elas-
ticity and cost expenditure of two variable inputs by Morlacco (2019), Wong (2021) and Delabastita and
Rubens (2024), among others.
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react significantly to changes in buyer power exposure, while once the capital-to-labor ratio

is controlled, as in Column 2, one can find a significantly positive estimate of buyer power on

relative output elasticity. This is unsurprising as Column 1 in Table 8 indicates a significantly

negative point estimate for capital-to-labor ratio, which is a component of θKjt/θ
L
jt as seen

before. Hence, what Column 2 captures is that a 1% increase in buyer power raises the

relative price of capital and labor by 1.27%. Conditioning the labor price in Column 3,

one can further isolate the buyer power effect on the cost of capital, which is 0.48%. This

corresponds to the reduced capital adoption found in Table 7, which corroborates that at

least a portion of reduced capital was due to the increased cost of capital.

6.4 Robustness Checks and Heterogeneity Analysis

Robustness Checks. Table 10 presents robustness checks on alternative measures for

dependent, endogenous, and instrumental variables when studying the buyer power effects

on coal mining death rates. I directly report the 2SLS results, controlling provincial coal

physical output, transportation patterns, and province- and year-fixed effects. Estimates are

very similar and consistent using alternative measures.

Specifically, the first column in Table 10 indicates that changing the death rate measure

to death per worker, a 1% increase in the exposed buyer power leads to increased death per

worker by 4.18%. In contrast, in column 2, I do not adjust the interprovincial transportation

patterns of coal freight volumes by the key state-owned coal mines’ inter-provincial and

sectoral sales. This allows the IV to directly capture demand-side shocks to other coal-

consuming industries, e.g., the steel sector, in the buying provinces. The result shows a

slightly higher estimate than that in the main text that the exposed buyer power in the

coal mining industry increases by 1%, which would induce the death rate to increase by

5.52%. Ultimately, I use alternative weight, i.e., interprovincial input-output flows of coal

(in monetary value) in 1997, to construct the provincial buyer power exposure. A concern

about using the input-output data is that it only reports monetary values, which implicitly

absorbs price and market power effects. Still, column 3 presents a qualitatively consistent

and robust estimate of buyer power effects on death rates.

Heterogeneity in the Production-Safety Tradeoff. I further allow for the heterogene-

ity in the production-safety tradeoff, by which the slope of the production-safety frontier

could vary across mines depending on their technology or capital-to-labor ratio. I report

the tradeoff estimates in Table 11. I first proxy modern technology by checking whether

a coal mine is state-owned. As noted in Section 2.1, state-owned coal mines tend to uti-

lize the most advanced mining technology with the highest mechanization rate among all

other counterparts. Column 1 indicates that the slope of the production frontier is related
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Table 10: Robustness Checks: Alternative Measures

(1) (2) (3)

Death per worker Alternative IV Alternative ln ψ̃ot

Buyer power exposure, ln ψ̃ot 4.177** 5.521** 5.516*
(2.034) (2.273) (3.182)

Specification 2SLS 2SLS 2SLS

First stage F-statistic 11.61 11.17 15.49

Observations 176 176 215

Notes: All columns control provincial coal physical output, transportation patterns, and
province- and year-fixed effects. Robust standard errors are reported in the parentheses.
***: p<0.01; **: p<0.05; *: p<0.1.

to the technology type. Coal mines with more advanced modern technology flatten the

production-safety tradeoff and expand the production frontier toward safety compared to

coal mines using relatively traditional technology. This evidence is in line well with the tech-

nological features of different mining methods, as introduced in Section 2.1. The average

production-safety tradeoff estimate is -0.051, which aligns with that found in the main text,

though slightly larger in magnitude. The estimate corresponds to an average elasticity of

coal output with respect to the safety of -5.01.

Table 11: Heterogeneity in the
Production-Safety Tradeoff

qjt (1) (2)

Safety, sjt -0.065*** -0.038
(0.013) (0.100)

Safety, sjt × Tech 0.050***
(0.014)

Safety, sjt × lnK/L 0.004
(0.036)

Specification Model Model

Observations 20,007 20,007

Notes: Tech dummy is proxied by state-
owned ownership status. Other production
function estimates are omitted from the re-
ported results. Standard errors are com-
puted by bootstrapping 200 times. ***:
p<0.01; **: p<0.05; *: p<0.1.

Nevertheless, using coal mines’ ownership to proxy technological differences is not free

from defects, as state-owned coal mines may also have different regulatory incentives other
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than technological features affecting their production and safety decisions. In column 2, I

further allow for the interaction of the capital-to-labor ratio with the safety measure (sjt)

to isolate heterogeneity concerning technological differences in the tradeoff. The results

are qualitatively consistent. In particular, coal mines with higher capital-to-labor ratios,

like adopting more advanced modern technology in column 1, make the production-safety

tradeoff flatter, shifting the production frontier towards safety.

However, the coefficients are less precisely estimated, though the point estimate of the

production-safety tradeoff is almost identical to the model in the main text. The high correla-

tion between the capital-to-labor ratio and other nonparametric terms is further exacerbated

when it interacts with the safety variable, inflating the standard errors of the estimated co-

efficients and making them less precise.79 I, therefore, take the model in the main text as

the primary estimate of the production-safety tradeoff in the coal mining industry.

7 Conclusion

In this paper, I estimate the impacts of buyer power on the within-firm organization of

production in the Chinese coal mining industry. I instrument for buyer power exposure

with a shift-share IV exploiting exogenous changes from an electricity sector restructuring.

I construct a structural model for coal mines with multiple outputs of coal quantity and

safety level with endogenous safety choices and factor-augmenting productivity.

Three main conclusions are to be drawn. First, I show that an increase in buyer power re-

duces coal mines’ future labor-augmenting productivity and negatively impacts Hicks-neutral

productivity heterogeneously. Higher buyer power decreases capital adoption, shifting min-

ing technology to be less capital-intensive and more traditional. This corresponds to the

technological switch from conventionally-mechanized to blasting mining, which is more dan-

gerous by nature and unintendedly leads to higher death rates. As buyer power becomes

prominent in antitrust litigation and debates (Loertscher and Marx, 2019a,b, 2021), com-

petition authorities should consider unintended externalities, in addition to concerns about

consumer welfare in the product market, when exercising their discretion in merger and

antitrust evaluations, particularly within upstream industries.

Second, using estimates obtained from the model, I find that a 1% increase in buyer

power exposure increases the number of deaths by 11 people per province a year, holding

the coal production quantity fixed. In contrast, coal mine-level evidence presents that a 1%

increase in buyer power of power plants leads to a 0.69% drop in coal output if the safety

79Similar results of inflated standard errors when considering heterogeneity in the tradeoff have also been
observed in Grieco and McDevitt (2017).
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level is held fixed. Taking the average coal price of 151 RMB Yuan per ton in 2001 (Wang

and Horii, 2008) and the average provincial coal production output of 70 million tons as

the benchmark, one can attribute the economic loss due to a 1% increase in buyer power,

holding safety level fixed, is around 73 million RMB Yuan per province.80 This suggests the

opportunity cost of saving one miner’s life is roughly 7 million RMB Yuan. However, the

“national benchmark” of the compensation payments in post-accident settlements for each

worker killed was 200,000 RMB Yuan (CLB, 2008), 3% of the opportunity cost. The high

opportunity cost of prior-accident prevention compared with low post-accident compensation

payments tends to drive coal mine owners to have much higher incentives to sacrifice safety

to produce more coal output, partially explaining the record-breaking alarming coal mining

death rate performance at the time.

Third, back-of-the-envelope analysis indicates substantial unintended consequences of

buyer power on coal mining death rates. I attribute a 7.7 percentage points (equivalently

6.8%) reduction in buyer power after 2002 to the restructuring of the electricity sector, which

induced coal mining death rates to decrease by 27%.81 The death rates overall decreased by

51% during the same period. Hence, back-of-the-envelope calculations demonstrate that the

declined buyer power from the electricity restructuring explains 53% of the improved coal

mining death rate performance. The findings offer a novel perspective for understanding the

common experience of high mining death rates across developed and developing countries

throughout various historical periods, which complements the rich literature about the coal

mining safety performance in China (Wright, 2004; Jia and Nie, 2017; Shi and Xi, 2018; Xu

et al., 2021) and beyond (Sider, 1983; Gowrisankaran et al., 2015; Charles et al., 2022).

Overall, all the findings mentioned above highlight the profound effects of buyer power

on the within-firm organization of production, underscoring the need for careful consideration

of market power and its holistic consequences in regulatory and policy frameworks, with

implications that extend beyond the context of the coal mining industry in the paper.

8073 = 0.69%× 70× 151.
8127% = 1− exp (4.549× ln(1− 6.8%)).
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A Additional Figures
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Figure A1: Evolution of Death Rates in the Coal Mining Industry in China: 1995-2007

Sources: The total number of workers in the coal mining industry is obtained from the ASIF database.

Other information comes from the Compilation of Coal Statistics of China’s Coal Industry.
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Figure A2: Evolution of Capital-to-Labor Ratio

Notes: I regress the capital-to-labor ratio on coal mine- and year-fixed effects, where standard errors are

clustered at the prefectural level. The coefficients of different year dummies are plotted, where 2001, the

year prior to the electricity sector restructuring announced, is normalized to zero.
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Figure A3: Evolution of Coal Price Markdowns for Different Markup Calibrations

Notes: I normalize the year before the announcement of the electricity sector restructuring to zero with
omitted confidence intervals. Standard errors are clustered at the prefectural level. 95% confidence intervals
in dashed lines are shown. The evolution of coal price markdowns is very robust to different markup
calibrations.
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B Details of the Coal Production Process Across Min-

ing Methods

Regardless of the specific technology employed, a typical coal extraction face involves a

cyclical sequence of five primary steps: coal cutting, loading, transporting, roof supporting,

and goaf stowing. Each step plays a crucial role in ensuring both coal production and safety.

I now describe and summarize the details of each step conditional on different coal mining

technologies following Yan et al. (2009).

Coal Cutting. This is the first phase of coal mining, where the coal seam is mechanically

cut or blasted, depending on the technology adopted. Specialized equipment, such as shearers

or continuous miners under conventional or fully-mechanized mining methods, is utilized to

remove coal from the seam.

Blasting Mining. Coal is broken up using controlled explosives. Holes are drilled into

the coal seam, and explosives are inserted and detonated, fragmenting the coal.

Conventionally-mechanized Mining. Coal is typically cut using semi-mechanized tools or

shearers. This method involves more manual labor than fully-mechanized mining methods.

Fully-mechanized Mining. Continuous miners mechanically cut the coal from the seam.

These large machines operate efficiently, and the coal is cut directly without explosives,

making the process more controlled and safer.

Coal Loading. Once the coal is cut or blasted, it needs to be loaded onto conveyors or

shuttle cars for transportation.

Blasting Mining. After blasting, the fragmented coal is manually loaded onto shuttle

cars, conveyors, or haul trucks with shovels.

Conventionally-mechanized Mining. Using Conventionally-mechanized Mining methods,

coal is loaded manually or with small loaders onto carts, conveyors, or trucks. This process

is slower and more labor-intensive than in fully-mechanized mining.

Fully-mechanized Mining. Continuous loaders are often integrated with the mining

machines, and coal is loaded directly onto conveyor belts without requiring separate loading

equipment.

Coal Transporting. The coal is then transported out of the mining face via conveyor

belts, rail systems, or haul trucks, depending on the mine’s layout and scale.

Blasting Mining. The coal is transported using shuttle cars or haul trucks, and later

conveyed to the surface via conveyor belts or rail systems.

Conventionally-mechanized Mining. After loading onto shuttle cars or manually oper-
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ated carts, the coal is transported along fixed rail systems or conveyor belts.

Fully-mechanized Mining. The transport system is usually fully integrated with the

cutting and loading machines. Conveyor belts directly transport coal from the face to the

surface, allowing for continuous operation and higher efficiency.

Roof Supporting. After the coal is extracted, roof support becomes essential to prevent

collapses. Pitwoods, hydraulic props, or self-advancing hydraulic supports are used to keep

the roof stable and ensure miner safety.

Blasting Mining. After each blast, roof supports are installed. Pitwoods or hydraulic

props are set up manually, and the roof support process may take longer as workers must

enter the mining area after each blast.

Conventionally-mechanized Mining. Roof support is also typically manual or semi-

mechanized. Workers install hydraulic props to support the roof after coal removal.

Fully-mechanized Mining. Automated and self-advancing hydraulic roof supports are

installed as the shearer or continuous miner advances. These supports are more effective

and provide real-time protection for workers and equipment. The roof support system can

advance with the machinery, ensuring continuous protection.

Goaf Stowing. This involves filling the void left by coal extraction with material such as

crushed stone or waste from the mining process. This step prevents subsidence and improves

the stability of the remaining structure.

Blasting Mining. Goaf stowing is typically done manually, using waste rock or crushed

stone brought in after each blasting cycle. This can be labor-intensive and time-consuming.

Conventionally-mechanized Mining. Goaf stowing is often performed by manually bring-

ing in waste material to fill voids or with small mechanical aids.

Fully-mechanized Mining. Fully-mechanized mining often employs the caving method,

which allows the roof to naturally cave in after coal has been extracted, gradually filling the

goaf. This method is cost-effective, as it doesn’t require additional materials for filling.

Overall, distinct engineering characteristics of different mining technologies result in

heterogeneous input intensity patterns for coal mines. The blasting mining technology in-

volves substantial material usage and high labor intensity in most mining processes, but it

is easy to utilize, especially in regions with complex geological conditions. In contrast, the

conventionally-mechanized coal mining technology improves efficiency by mechanizing coal

cutting and loading. However, significant workers and materials are still needed to support

the roof and stow the goaf manually, the same as employing blasting mining technology.

Regarding the fully-mechanized coal mining technology, it mechanizes all relevant mining
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processes and hence requires minor labor inputs and is more efficient, though it demands

substantial fixed costs.

C Data Appendix

Summary Statistics. Table C1 presents the summary statistics for the primary datasets I

use in the paper. The full sample consists of 10,538 and 42,535 observations for power plants

and coal mines during 1999-2007, respectively. Specifically, around 1,000 power plants and

4,000 coal mines are active annually. Nevertheless, not all firms report each variable in each

year, especially for quantity-related input and output variables. Thus, I use all observations

that report all required variables to estimate corresponding production functions and apply

the estimates of output elasticities to the remaining observations.

Table C1: Summary Statistics of Power Plants and Coal Mines

Unit Mean Std. dev. p10 p50 p90

Panel A: Power plants

Electricity Output GWh 1,307 2,247 35 246 4,152

Real capital 1,000 RMB Yuan 764,340 1,955,757 17,711 151,161 2,210,997

Employment person 758 1,736 97 408 1,708

Coal input ton 696,325 1,020,771 34,194 212,866 2,094,626

Nominal wage 1,000 RMB Yuan 23,567 62,783 1,392 7,444 57,492

Nominal intermediate input 1,000 RMB Yuan 227,156 337,583 10,336 73,760 699,012

Nominal revenue 1,000 RMB Yuan 408,014 961,567 13,570 97,194 1,121,152

Panel B: Coal mines

Coal Output ton 188,544 415,207 21,900 77,623 359,234

Accident probability % 98.52 2.42 95.36 99.63 99.99

Real capital 1,000 RMB Yuan 28,208 112,900 1,324 5,220 41,576

Employment person 522 1,412 45 180 970

Nominal wage 1,000 RMB Yuan 6,138 17,802 360 2,031 10,744

Real wage 1,000 RMB Yuan 4,771 14,203 286 1,549 8,245

Nominal intermediate input 1,000 RMB Yuan 25,612 63,265 2,339 8,467 51,834

Real intermediate input 1,000 RMB Yuan 22,161 55,412 2,080 7,440 44,345

Notes: Summary statistics for main variables based on the full sample of 10,538 and 42,535 observations for
power plants and coal mines, respectively, during the 1999-2007 period.

Credibility Evaluation of the Coal Mine Accident Data. Table C2 presents the
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summary statistics of coal mine accidents. After dropping duplicated observations, I retain

7,415 coal mine accidents from 2000 to 2007. I identify accident types by checking accident

descriptions manually. Ultimately, it indicates that roof accidents accounted for China’s

most frequent coal mine accidents (49%), followed by gas accidents (21%), composing the

top two accident types between 2000 and 2007. The snapshot of the coal mine accidents

aligns well with public information and what I introduced in Section 1.

Table C2: Summary of Coal Mine Accidents

Accident Type Number Share (%)

Roof 3,651 49

Gas 1,552 21

Transport 802 11

Safety operation 500 7

Water inrush 361 5

Other 549 7

Total 7,415 100

Sources: State Administration of Workplace Safety.

In addition, Fisman and Wang (2017) document a “death ceiling” effect in reported

deaths in China, where a sharp discontinuity in reported deaths at the ceiling was observed,

suggesting the local bureaucrats’ data manipulation. The incentive behind this was that if

the accidental deaths exceeded certain ceilings, it would hinder government officials’ promo-

tion. Similar incentives in political promotion competition regarding safety and accidental

deaths have also been corroborated in Shi and Xi (2018). Specifically, the death ceiling was

assigned by the severity of the accident: “severe” for 3 or more deaths and “very severe”

for 10 or more deaths. Hence, if there was data manipulation in #death in coal mine ac-

cidents, one would expect a sharp discontinuity in reported deaths around the ceilings of 2

and 9. Figure C1 presents the density curve of #death in coal mine accidents. As we can

see, the density curve of #death in coal mine accidents is smooth in trend, and no abnormal

discontinuity is observed around the ceilings of 2 and 9, suggesting a regular data reporting

pattern.

a
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Figure C1: Density Curve of #Death in Coal Mine Accidents

Notes: Data source comes from the State Administration of Workplace Safety. I set the higher range

bound to 100 to enable clearer visualization of the left tail. There are only four observations that report

#death higher than 100.

D Proof of Proposition 1 and Corollary 1

Proposition 1. The buyer power of downstream power plants induces upstream coal mines

to adopt less capital for both coal production and worker safety, ultimately leading to lower

capital-to-labor ratios for both production processes.

Proof : The proof consists of two parts.

i) Comparative statics of an exogenous buyer power increase. By rewriting

Eq.(5) and Eq.(6), one can see that the optimal levels of capital stocks, Kq∗ and Ks∗, and

labor, Lq∗ and Ls∗, are given by

∂Q

∂Kq
=
r(b)

λ
, − ∂A

∂Ks
=
r(b)

κ
,

∂Q

∂Lq
=
w

λ
, − ∂A

∂Ls
=
w

κ
. (30)

Given ∂r(b)
∂b

> 0, an increase in b leads to higher r(b). Combining ∂Q
∂Xq > 0,

∂( ∂Q
∂Xq )
∂Xq < 0, ∂A

∂Xs <

0, and
∂( ∂A

∂Xs )
∂Xs > 0 (Xq ∈ {Kq, Lq} and Xs ∈ {Ks, Ls}), an increased r(b) unambiguously

induces lower Kq∗ and Ks∗. Hence, higher buyer power downstream leads to less adoption

of capital upstream.

ii) The impact of buyer power downstream on capital-to-labor ratios up-
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stream. Dividing first-order conditions of capital by that of labor in Eq.(30), one can infer

capital-to-labor ratios for production and safety input from r(b)
w

= ∂Q
∂Kq /

∂Q
∂Lq = ∂A

∂Ks/
∂A
∂Ls .

Buyer power downstream, b, only affects capital-to-labor ratios via influencing r(b), where

an increase in b leads to higher r(b). For either v ∈ {q, s}, a higher r(b) induce a higher

∂Q
∂Kv , hence a lower Kv. Note that an increase in b leads to Ls∗ and Lq∗ unchanged. Hence,

both conditions lead to a decrease in the capital-to-labor ratio of Kv/Lv.□

Corollary 1. The buyer power of downstream power plants can induce more coal mining

accidents upstream via increased cost of capital adoption.

Proof : The effect of the downstream buyer power on the amount of accidents upstream

is given by

∂A

∂b
=

∂A∗

∂Ks︸︷︷︸
<0

∂Ks∗

∂r(b)︸ ︷︷ ︸
<0

∂r(b)

∂b︸ ︷︷ ︸
>0︸ ︷︷ ︸

>0

.

The proofs are straightforward using Proposition 1.□

E Derivations

Expression for the Labor-Augmenting Productivity. Given the coal mine’s (vari-

able) cost minimization problem:

min
Ljt,Mjt

PL
jtLjt+P

M
jt Mjt s.t. {βKK

− 1−σ
σ

jt +[exp(ωLjt)Ljt]
− 1−σ

σ +βMM
− 1−σ

σ
jt }

σκ
σ−1 exp(ωHjt) ⩾ Ȳjt.

One can consider the associated Lagrangian function for the coal mine:

Ljt = PL
jtLjt + PM

jt Mjt + λjt
(
Y jt − Yjt (Mjt, Ljt, Kjt,ωjt)

)
, (31)

where ωjt = (ωHjt, ωLjt). The first-order conditions with respect to labor and material give

to

∂Ljt
∂Ljt

= PL
jt − λjt

∂Yjt( · )
∂Ljt

= 0, (32)

∂Ljt
∂Mjt

= PM
jt − λjt

∂Yjt( · )
∂Mjt

= 0. (33)
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Dividing Eq.(32) by Eq.(33), one can get

∂Yjt( · )
∂Ljt

/
∂Yjt( · )
∂Mjt

=
PL
jt

PM
jt

. (34)

Given Yjt(Mjt, Ljt, Kjt,ωjt) =
{
βKK

− 1−σ
σ

jt + [exp(ωLjt)Ljt]
− 1−σ

σ + βMM
− 1−σ

σ
jt

} σκ
σ−1

exp(ωHjt),

I can derive out

∂Yjt( · )
∂Ljt

=
σκ

σ − 1

{
βKK

− 1−σ
σ

jt + [exp(ωLjt)Ljt]
− 1−σ

σ + βMM
− 1−σ

σ
jt

} σκ
σ−1

−1

exp(ωHjt)

× [exp(ωLjt)]
− 1−σ

σ

(
−1− σ

σ

)
(Ljt)

− 1−σ
σ

−1 , (35)

∂Yjt( · )
∂Mjt

=
σκ

σ − 1

{
βKK

− 1−σ
σ

jt + [exp(ωLjt)Ljt]
− 1−σ

σ + βMM
− 1−σ

σ
jt

} σκ
σ−1

−1

exp(ωHjt)

×βM
(
−1− σ

σ

)
(Mjt)

− 1−σ
σ

−1 . (36)

Substituting Eq.(35) and Eq.(36) into Eq.(34), rearranging terms, the expression for the

labor-augmenting productivity with observed variables and estimable parameters is given by

[exp(ωLjt)]
− 1−σ

σ = βM
PLjtLjt
PMjtMjt

(
Mjt

Ljt

)− 1−σ
σ

. (37)

Deriving the First-Stage Estimating Equation. Plugging Eq.(18), the control func-

tion of the labor-augmenting productivity, into Eq.(17), rearranging terms, the production

frontier to be estimated turns to be:

qjt = −αssjt + κ ln(Mjt) +
σκ

σ − 1
ln

(
βK
βM

(
Kjt

Mjt

)− 1−σ
σ

+

(
1+

PLjtLjt
PMjtMjt

))
+

σκ

σ − 1
ln βM

+ωHjt + αsϵ
s
jt + ϵqjt.

(38)

Substituting the control function of the Hicks-neutral productivity, ωHjt = ht(kjt, ljt,mjt,
PLjtLjt

PMjtMjt
,

zjt), into Eq.(38), one can rewrite the production frontier as:

qjt = −αssjt + κ ln(Mjt) +
σκ

σ − 1
ln

(
βK
βM

(
Kjt

Mjt

)− 1−σ
σ

+

(
1+

PLjtLjt
PMjtMjt

))
+

σκ

σ − 1
ln βM

+ht

(
kjt, ljt,mjt,

PLjtLjt
PMjtMjt

, zjt

)
+ αsϵ

s
jt + ϵqjt.

(39)
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Substituting xjt =
{
kjt, ljt,mjt,

PLjtLjt

PMjtMjt

}
into the above equation to save notations, the

first-stage estimating equation as in the main text is:

qjt = −αssjt + ϕt(xjt, zjt) + ϵjt,

where ϕt(xjt, zjt) = κ ln(Mjt)+
σκ
σ−1

ln

(
βK
βM

(
Kjt

Mjt

)− 1−σ
σ
+
(
1+

PLjtLjt

PMjtMjt

))
+ σκ
σ−1

ln βM+ht(xjt, zjt)

and ϵjt = αsϵ
s
jt + ϵqjt.
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